
A4-ADZ 924 ALFRED P SLOAN SCHOOL OF MANAGEMENT CAMBRIDGE MA CEN--ETC FIG 9/2
PRELIMINARY ARCHITECTURAL DESIGN FOR THE FUNCTIONAL HIERARCHY--ETC(U)NOV 80 M HSU. S E MADNICK

NOO0G3-80-K-O4G8
UNCLASSIFIED CISR-MIO0-8011-05 NL

E ".IhhhmhhhmuIIIIEIIIEEEEII
IEEIIIEEIIIIII
llllhllllllllu
IIIIIIIIIIIIII
IIIIIIIIIIIIII

LEI

Ot

Cetrfor Information Systems Research

CetrMas;sachusetts Institute of Technology'

Alfred P1 Sloan School of Management
1)0 Memorial Drive

Cambridge. Massachusetts 02139

Qontract 98er 90 .
Internal Report Ntmxber M10-8011-05

t,,. "' i".-i s"
-" A4

A Preliminary Architectural Design

r, Iie
Functional Hierarchy

if)Zhe

L...F.TEC Database Caciur m t

Meich'u!lsu . {## ('

Te,-cnica-l Report # 5

/ ' WP' 1197-81 - //
:bveirber 1980

.1.

TI

(4 .- // C.

Principal Investigator:

Professor S.E. Madnick

Prepared for: Wit

Naval Electronics System ConTrand

Washington, D.C.

9 5 bECUNITY CLASIFICAT 1 I O O l PA veto an ol * h Wo,

qECUlAITY CLASSIFICATION OW T4S PAGE (%hen Date Entered)

REPORT DOCUMENTATION PAGE RED CNSTRUCTIONS
1. REPORT NUMBER '2. GOVT ACCESSION NO. 3. RCIPI NT' CATALOG NUMSEA

Technical Report 16

4. TITLE (and Subtitle) S. TYPE OF REPORT A PERIOD COVERED

A Preliminary Architectural Design for the
Functional Hierarchy of the INFOPLEXpL~o-u~rA. PCRORMMPOR.3. REPORT NUMBER
Database Computer

7. AUTHOR(ea S. CONTRACT OR GRANT NUMSER(e)

N0039-80-K-0498 A I'dMeichun Hsu

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PR JECT. TAS.
AREA & WORK UNIT NUMBERS

Sloan School of Management
Massachusetts Institute of Technology
-Cambridge. MA 02139

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
November 1980

.. NUMBER OF PAGES• " "181

14. MONITORING AGENCY NAME & ADRESS(|i different from Controlling Office) 15. SECURITY CLASS. (at this report)

Unclassified

a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

Id. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of tho abetect entered In Block 20, 11 different hee, Report)

30. SUPPLEMENTARY NOTES

lg. KEY WORCS (Continue on reverse side Ii neceee04 ad identit, by block nambe)

Database computer, data base management system, functional decomposition,
multiple processor system, hierarchical system

20. ABSflM'CT (Continue an reveree aide it noceear aid tdentit& b block meeba)

Conventional computer architecture has shown its limitations in
supporting large-scale information processing. Database machines which
specialize in database functions have been suggested to alleviate the
problem of increasing loads on these computers.

The INFOPLEX database machine proposed by Madnick employs a highly-
parallel computer architecture to achieve high performance and capacity. --

DD 'M 1473 EDITON ov 41 IS OBSOLETE

bECURITY CLASSIFICATION Or TNIS PAGE (Ben Dete Anie,

SECUmITY CLASSIFICATION OF TIS PAGE Man, Data Ent~)

It contains two subsystems: the storage hierarchy and the functional
hierarchy. This paper is about a design of the functional
hierarchy, the subsystem of the INFOPLEX which performs database
functions.

As originally proposed by Madnick, the functional hierarchy is
made up of hierarchical levels; each level is designed to perform
certain database functions and is to be implemented by multiple
microprocessors. The guidelines for identifying these levels are:
(1) functional abstraction, and (2) pipelining of transactions.
This paper attempts to turn this original idea into a detailed
design by accomplishing the following: (1) Identification "of
functional requirements (i.e., features),of a generalized DB,S;
these features are to be supported by the functional hierarchy;
(2) Development of an integrated data model; (3) Detailed spec-
ifications of architectural levels, including their functions and
implementation strategies; and (4) Pointing out future research
directions.

-A

[.A:; (- s i C"t " (

Distri u lc:/

AvatirjL _ o

/o

SJ

59CURITY CLASSIFICATION OF THIS PAOIEf"hee Dnto 80#nd)

'-

p. 1

ABSTRACT

Conventional computer architecture has shown its limitations in

supporting large-scale information processing. Database machines which

specialize in database functions have been suggested to alleviate the

problem of increasing loads on these computers.

The INFOPLEX database machine proposed by Madnick employs a

.1 highly-parallel computer architecture to achieve high performance and

capacity. It contains two subsystems: the storage hierarchy and the

functional hierarchy. This paper is about a design of the functional

hierarchy, the subsystem of the INFOPLEX which performs database

functions.

As originally propsosed by Madnick, the functional hierarchy is

made up of hierarchical levels; each level is designed to perform

certain databasae functions and is to be implemented by multiple

-4 microprocessors. The guidelines for identifying these levels are (1)

pipelining of transactions, and (2) functional abstraction. This paper

attempts to turn this original idea into a detailed design by

accomplishing the following: (1) Identification of functional

requirements (i.e., features) of a generalized DBMS; these features

are to be supported by the functional hierarchy; (2) Development of an

integrated data model; (3) Detailed specifications of architectural

levels, including their functions and implementation strategies; and

(4) Pointing out future research directions.

;V - 1 " '"" ' -.. . .

p. 2

TABLE OF CONTENTS

1. Introduction .. 5

1.1 Storage Hierarchy ... 6
1.2 Functional Hierarchy .. 9

1.2.1 Hierarchical Functional Decomposition 9
1.2.1.1 Hierarchical vs. Non-hierarchical design..9

1.2.1.2 Family of systems 13
1.2.2 Multiple Microprocessor Implementation 15
1.2.3 Summary .. 19

1.3 Research Goals and an Overview of this Report 22

2. The General Structure of the Functional Hierarhcy 27

2.1 Stratification of the Database Management System 27
2.1.1 The ANSI/SPARC DBMS Architecture 27
2.1.2 DIAM Concepts .. 30
2.1.3 The INFOPLEX Approach 30

2.2 Data Models .. 32
2.2.1 The Conceptual Data Model 32

2.2.1.1 Literature Overview 32
2.2.1.2 the INFOPLEX Approach 35

2.2.2 The Internal Data Model 46
2.2.3 Support of Multiple Views 49
2.2.4 Summary ... 54

3. Memory Management ... 56

3.1 The id Approach ... 56
3.2 Allocating Storage Space 60
3.3 Page Fix and Clustering Considerations 61
3.4 Virtual Storage Interface 61

'A 3.5 Memory Management Interface 62

4. Internal Structure ..67

4.1 Introduction .. 67
4.2 Data Encoding Level .. 71

4.2.1 Data Definition Interface 71
4.2.2 Operational Interface 72

4.3 Unary Set Level ... 74
4.3.1 Introduction ... 74
4.3.2 Primary Sets and Secondary Sets (Subsets) 76
4.3.3 Catalogue Implementation 76
4.3.4 Fast Search Mechanisms 78

4.3.4.1 Sorting 79
4.3.4.2 Index Table Implementation 79
4.3.4.3 Hash Table Implementation 80
4.3.4.4 Summary of Fast Search Mechanisms 82

--

p. 3

4.3.5 Data Definition Interface 834.3.6 Operational Interface 83
4.3.7 Conclusion of Unary Set Level 84

4.4 Binary Association Level 89
4.4.1 Introduction ... 89
4.4.2 General Mechanism 89
4.4.3 Data Definition Interface 91
4.4.4 Operational Interface 95
4.4.5 Summary ... 97

5. Database Semantics ! 103

5.1 N-ary Level ... 103
5.1.1 Introduction ... 103
5.1.2 Data Definition 103
5.1.3 N-ary Operators , 104
5.1.4 Retrieval Strategy 107
5.1.5 Entity Record Construction 113

5.2 Virtual Information Level 119
5.2.1 Introduction ... 119
5.2.2 The General Mechanism 120
5.2.3 Data Definition Interface 122
5.2.4 Operational Interface

5.3 Data Validity Level
5.3.1 General Mechanism 125
5.3.2 Data Definition Interface 126

5.3.3 Operational Interface 127

6. User Views and Database Secureity 128

6.1 Introduction ... s128
6.1.1 Mappings ... 129

6.2. View Enforcement Level 134
6.2.1 Introduction 134
6.2.2 General Mechanism 136
6.2.3 Data Definition Interface 136
6.2.4 Operational Interface 137

6.3 View Translation Level 13?
6.3.1 View Translation Level -- Relational View 138
6.3.2 View Translation Level -- Hierarchical View 147
6.3.3 View Translation Level -- Network View 153
6.3.4 Database Sublanguage Facility and Summary of the View

Translation Level 161
6.4 View Authorization Level 164

6.4.1 Introduction 164
6.4.2 Data Definition Interface 165
6.4.3 Operatinal Interface 168

7. Summary and Future Research Directions 169

7.1 Summary of Report ... 169

p. 4

7.2 Future Research Directions................................. 172
7.2.1 Formal Design Methodology......................... 172
7.2.2 Locking Mechanisms 113
7.2.3 Mapping of operators............................... 174
7.2.4 Implementation of a Software Prototype 174
7.2.5 Performance Evaluation 175
7.2.6 Recovery and Reliability.......................... 175

References... 176

p. 5

I. INTRODUCTION

Conventional computer architecture has shown its limitations in

supporting high-performance, high-reliability and large-capacity

systems dictated by today's information processing needs. Attempts in

the form of microcoded instruction sets, intelligent controllers,

back-end processors and database machines have been made to augment the

data processing capability of a computer <Hsiao77>. The INFOPLEX

database computer represents one effort which employs a highly parallel

computer architecture designed specifically for such information

procesing needs.

Using the concept of hierarchical decomposition in its design,

multiple microprocessors in its implementation, and decentralization in

its control mechanism, the INFOPLEX database computer architecture has

as its objective the support of large-scale information management with

high reliability <Madnick79>. It aims to provide a solution to the

problem of increasing loads, in terms of both throughput and volume of

stored data, faced by today's and tomorrow's information processing

nodes.

INFOPLEX consists of a storage hierarchy, which supports a very

large data storage system, and a functional hierarchy, which is

*responsible for providing all database management functions other than

device management. The functional hierarchy is built on top of a

storage hierarchy. This data computer may be used as a stand alone

database machine, where users interact with it directly through a

Data-Definition/Data-Manipulation/Query language interface, or it can

..

p. 6

be connected to a regular host computer through a data channel, where

the host computer augments the database machine's functions by

providing language processors and other utilities. The host computer

.generates commands to be received by INFOPLEX's DDL/DML/Query

interface, as depicted in Fig 1.1.

1.1 Storage Hierarchy

The storage hierarchy is comprised of levels of storage devices

with various performance and cost features. In our research

<Madnick75>, it is found that the requirements of a high-performance

and low-cost storage system are best satisfied by a mixture of

technologies combining expensive high-performance devices with

inexpensive low-performance devices. Hierarchical decomposition is

applied to organize this ensemble as a hierarchy. The high-performance

devices, such as cache memory and main memory, are placed on the top

(i.e., the highest level of the hierarchy), while low-performance

devices such as mass storage systems are placed at the bottom (i.e.,

the lowest level of the hierarchy). An example of our storage

hierarchy is shown in Fig 1.2.

The storage hierarchy supports the functional hierarchy by

providing a very large linear virtual address space with a small access

time. The actual structure of the storage hierarchy and movement of

information between levels within the storage system are hidden from

the functional hierarchy. The lowest level of the storage hierarchy

always contains all the information of the system, while higher levels

I " " I .5 ' - - ":', .. . " ' ' , , :

P.7

IUtseac

Functiona
Hierarchy

Controllers

Storage
Interface

Storage
Hierarchy

Fig 1.1 INFOPLEXt Backend in3chine/Stand-alone
data computer

p. 8

Storage references

controller

1. CACHE

2. M~AIN

IL 3. BLOCK

4. BACKING

5. SECONDARY

Figure 1.2 An Example Memory Hierarchy

p. 9

contain subsets of the total database. Requests for data are made to

the highest level, and information is moved automatically between

levels depending upon actual or anticipated usage, such that the

information most likely to be referenced in the future is kept at the

highest level. The effectiveness of the storage hierarchy therefore

depends heavily on locality of reference.

Microprocessors are used at each level to implement data movement

algorithms. Simultaneous and parallel operations at all storage levels

enhance throughput and reliability of the storage system. Various

desirable properties of storage hierarchies have been identified, and

the relationships between these properties and various storage

management strategies have been studied in detail <Lam79, Abraham79>.

1.2 Functional Hierarchy

1.2. 1 Hierarchical functional decomposition
"I

The INFOPLEX functional Hierarchy is designed around a concept of

hierarchical functional decomposition. The concept of hierarchical

decomposition, as applied to the functional design area, is a technique

that identifies the key functional modules that have minimal

interdependencies and can be combined hierarchically to form a software

system, such as an operating system or a database management system.

1.2.1.1 Hierarchical vs. non-hierarchical design

Vl
i t '

p. 10

The advantages of hierarchical modular design as opposed to

conventional subroutine modular design can be shown by a simple

comparison. Fig 1.3 depicts a system consisting of a "main" program

and eight subroutines. In addition, there is a common data pool used

by all of these routines. Each link in the figure represents an

interdependency. If the function or interface to suroutine E were

changed, five other subroutines (i.e. M, A, B,C, and D) may also have

to be changed. The same argument applies to changes in the format or

usage of a variable in the data pool. In the hierarchical

decomposition approach, functionality is distributed to modules in a

very strict manner so as to produce a hierarchical structure as

illustrated in Fig 1.4. In this case, the modules are designed such

that each of the nine routines is only dependent upon one other

routine. Furthermore, each routine maintains its own private data pool

as needed to serve its function. In such a case, if a subroutine is

modified, there is only one other subroutine that can be directly

affected and must be tested. Similarly, a change in a data pool

variable only impacts a single subroutine. Besides minimizing the

propagation of changes, this hierarchical approach also makes it much

easier to determine which subroutine must be changed, and in what

manner, since the functionality of each subroutine must be

well-defined. his approach has been found to be very effective in

earlier design work on file systems <Madnick69, Madnick74>.

Another reason for the choice of a hierarchical design is to take

advantage of the pipelining nature of transaction processing in a

database system. A transaction that enters a database system normally

has to go through a sequence of stages of processing. For example, it

Fig 1.3: Non-hierarchical design

p.12

-I,

m

J.m

3

IM

Fig 1.4 Hierarchical design

INF-iil 1

p. 13

way first be checked by a security control module; then it is passed

to a name-mapping module which determines the records to be accessed;

and then it is given to a search module which determines the address of

the records; finally a storage module is invoked to obtain the record

from the memory. Ihese stages suggest strongly a database system

structure that reflects their sequence. Moreover, the modules that

support the earlier stages of processing (e.g., security control and

name-mapping) also require services provided by those modules that

support the later stages of processing (e.g., searching and accessing).

Research in stratification of database systems will be reviewed in

chapter 2. Here we conclude by pointing out that, since hierarchical

modularity enables higher-level modules to be implemented on top of an

'extended machine' incorporating all the primitives implemented at

lower level modules, it contributes to the reduction of redundancy of

functions in the system, and therefore enhances the reliability.

1.2.1.2 Family of systems

..

*. Another advantage of the decomposition approach lies in the

development of a 'family of systems'. The concept of 'family of

* systems' is motivated by the proliferation of operating systems or

DBMS's developed over the past decade or two. While the individual

systems may have various desirable features, it is often difficult for

the user to find a system which possesses just the right number of

qualities that he desires. It is therefore advantageous to develop a

general structure that can be used as a basis for many different

systems. By decomposing a system into modules that are compatible

through a set of well-defined interfaces, it is nearly possible to

i.

p. 14

develop any specific system by an appropriate choice of modules

proposed. In other words, a desired system may be assembled according

to needs the way a stereo system or a cutomized automobile is

assembled. In our research on Family of Operating Systems <FOS76> and

Family of Database Management Systems <FODS76>, hierarchical modular

design was found to be effective in providing a normative model for the

systems.

Members of a family of systems will differ as a result of

differences in the contents of the "modules that make up the hierarchy.

There are three broad classes of module differences:

(1) Functional: Although the purpose of and the interface to each

module must be clearly defined, the specific functions and

algorithms used may vary significantly.

(2) Performance: For a given functionality, there may be

different implementations that offer different performance

characteristics.

(3) Existence: As an extreme case of minimal functionality,

certain modules may not exist at all in certain system.

Applying the concept of heirarchical decomposition, the INFOPLEX

Functional Hierarchy attempts to decompose the typical DBMS functions,

such as data restructuring, security control, integrity and validity

checking, access path optimization, data encoding, etc., into a

hierarchy of tasks, each of which to be implemented as a 'level' of the

hierarchy. Levels are connected in a top-down fashion, with higher

level modules supported by the 'primitives' of the 'extended machine'

9.

p. 15

composed of the hardware and all lower level functional modules.

However-,- design and implementation of each level is made as independent

of other levels as possible so that algorithms incorporated in a

particular level are not affected by those of other levels. In

particular, inter-level communication is made through a set of clean,

pre-defined interfaces.

1.2.2 Multiple Microprocessor Implementation

The functional levels specified above are to be implemented using

multiple microprocessors to take advantage of possible parallelism and

pipelining effects in processing incoming streams of transactions. As

shown in Fig 1.6, each level in the hierarchy communicates only with

adjacent levels and each module within a level communicates only with

adjacent modules. Thus no central control mechanism is necessary.

When a processor in a level requires service from the next lower
J

level, it places an operation code and associated operands in a shared

memory area accessible to only these two levels. This special memory

- module is called an Interlevel-Request-Queue, or IRQ, to be

distinguished from the storage hierarchy and the local memory described

below.

In addition to the IRQ, every level has some local memory as

working space. Therefore, each processor may have 3 sets of memory

modules:

(1) IRQ shared by the next higher level,

V

i4 rv l I ' " " -T ,< - , - -

p. 16

(2) local working space, and

(3) IRQ shared by the next lower level.

This concept is shown in Fig 1.6.

Even though a processor has a number of memory modules, memory

operations can be supported in a conceptually simple fashion by

assigning different ranges of the address space of the processor to

each of its three memory modules. Thus the same set of storage

operations (i.e.LOAD,STORE,MOVE,etc.), and the same addressing

mechanisms can be used for each of the three types of memory.

To illustrate, suppose the data encoding level (refer to fig 1.5)

places a request to the memory management level to fetch a byte string

of data, given its 'id'. (The 'id' is a unique identifier for the byte

string, and is described in detail in section 2.1) The calling module

formats a message and stores it in the IRQ shared by the data encoding

and memory management levels. This message contains an operation code

(i.e. 'FETCH') and the id of the data element to be retreived. When
.'4
.d the memory management level completes this request, it stores the byte

jstring of data in the IRQ, and returns a message to the data encoding

level, containing a pointer to the data in the shared IRQ.

There are several ways to implement this hierarchical ensemble of

processors and memory modules. One approach is to simulate the

hierarchical structure of the system with a linear, single bus,

structure (Fig 1.7). Research in the area of multiple microprocessor

networks has shown that improved communication protocols and bus

architectures can be used, with today's technology, to linearly connect

r

View Auth.1
Level p. 17

V iew Tra
Level

View En-

fnrepment !
-Lev

Validity/ 7

Integrity
..Lev I I

Virtual Info

~N-ary

Level

Binary

Level

Unary Set
Level

Data Encoding
Level

Memory Mgmt.1
Level

Virtual Storage Interface

Virtual Storage

Fig 1.5. Functional Hierarchy

Vl

p. 18

_ _ _ _ _ _ Level i-I

Level i

Level i-Il

Fig 1.6 Multi-processor implementation of Functional
Hierarchy

Microprocessors Memory modules

aL

A

-1$
Fig 1.7 Simulating Functional Hierarchy with

a single-bus microprocessor ensemble

p. ;9

up to 60 microprocessors without any performance degradation due to

communication bottlenecks on the bus<Toong80>. Another approach,

taking advantage of new fabrication technologies, is to implement each

functional level using several multi-microprocessor multi-memory

clusters. As illustrated in Fig 1.8, each of these clusters is

referred to as a functional processor cluster (FPC), and can be

fabricated on a single chip. The IRQ may also be implemented using a

FPC, whose data buses communicate with adjacent functional levels, as

shown in Fig 1.9 <Madnick80>.

1.2.3 Summary

The advantages of the functional decomposition approach to

database computer design are summarized below:

(a) Decomposed design and implementation: Functional

decomposition breaks the design and implementation of a

potentially very large DBMS into smaller, much-easier-to-tackle

, modules, where each module can be worked on separately.

(b) Modularity: Each level of the functional hierarchy interacts

with other levels through a clean set of interfaces; therefore

modules that perform the same task while using different

algorithms or employing different levels of sophistication can be

selectively plugged into the system.

(c) Parallelism and pipelining: Multiple microprocessor

implementation makes it possible to process very high transaction

rates (orders of magnitude higher than currently available

systems).

.I' T

p. 2C

.44

Fig .6FuconlPoesrCutr FPC)

Fig ~ I Fun c~tional ever lutr F

inafntoa ee

I p. 2T

t -Inter Level
Requests

-~ ~ M4 1~
(MULTIPLE ______

SHARED

M3 RAM 2

A' f I Inter Level
I , Requests

FIGURE 1.9

IRQ Structure as a Functional Processor Cluster (FCP)

p. 22

(d) Distributed control: Since each module has clearly defined

functions, it is easier to detect errors and to identify the

erroneous module. Also the use of multiple parallel processors at

each level enhances the availability of the system in the event of

any isolated software or hardware breakdown.

1.3 Research goals and an overview of this report

The goal of this research is to turn the INFOPLEX concept of a

pipelined, multi-processor-based database management system into a

detailed design. Specific accomplishments are the following:

(1) Identification of functional objectives of the system: We

have identified, drawing from the current literature in the DBMS

area, the following as major features to be included in the design

of the system:

(a) multiple types external views of the database

* (b) a high-level conceptual data model rich in semantics

(c) a flexible physical data structure

(d) explicit support of database security, validity, alerting

constraints and virtual information

(e) concurrent use of the database

(2) Development of an integrated data model: we have developed a

data model, which is used to describe the database and serve as a

media for inter-level communications

(3) Specification of architectural levels: We have examined

database stratifications in the past and proposed a more

IA

p. 23

generalized layered architecture to achieve our functional

objectives. In particular, functions performed and data

structures used to implement them at each level are described.

This can be used as a blue-print for software prototype

implementation and for future study and refinement.

In this chapter, we have reviewed the architecture of the INFOPLEX

database machine and introduced basic design concepts of the functional

hierarchy as outlined in <Madnick79>.

In chapter two, the general structure of the functional hierarchy
is discussed. It describes the rationale for the proposed

stratification in an integrated fashion, and relates it to the

literature of various database research areas.

The rest of the report is organized around the proposed structure

of the Functional Hierarchy. For each level identified in the

. Functional Hierarchy, the following general issues are discussed:

1) The functions this level performs;

2) The rationale for singling out this level;

3) The implementation strategies;

4) The interfaces;

As shown in Fig 1.5 , our design of the INFOPLEX Functional

Hierarchy has the following levels:

A. Memory Management

V;' p

p. 24

1) memory management level

B. Internal Structure

2) data encoding level

3) unary set level

4) binary association level

C. Database Semantics

5) n-ary entity level

6) virtual information level

7) data validity and data integrity level

D. User Views and Database Security

8) view enforcement level

9) view translation level

10) view authorization level

The report starts from the lowest level of the Functional Hierarchy.

In chapter three, we discuss the memory manager. The discussion

focuses on how this level is to be implemented in order to manage the

virtual memory resource and to provide mapping functions of the logical

identifier of a data element to its physical identifier in the virtual

memory.

In chapter four, we describe how the internal structures of the

database are supported. Descriptions of the three levels supporting

the internal structure, namely, the data encoding level, the unary setkI
level, an_ the binary association level are presented.

The encoding scheme of a stored data element may change when the

Ir

p. 25

element is passed from one level to another. In particular, an element

may go through data compaction, editing, or various forms of encoding

right before it is to be stored into the storage hierarchy. The data

encoding level provides functions to perform these types of data

conversion.

Stored data elements are grouped into unary sets. (The notion is

similar to that of grouping stored records into files.) The unary set

level deals with search and retrieval of stored data elements from the

unary sets. It provides a "content-addressable" interface to its

superior levels. It incorporates data structures that facilitate

searching into the database.

The binary association level implements binary connections

specified in the conceptual schema. Even though it is classified as

one of the internal structure levels, it provides the basic service to

materialize complex semantic constructs. It is capable of extracting a

data element from the database given the content of an associated

element.

'II
In chapter five, we discuss how database semantics may be built in

and maintained. A structure of 3 hierarchical levels is proposed. At

the n-ary entity level, binary associations are grouped into an n-ary

construct that is used to describe an entity in the real world.

Multi-valued attributes as well as nested attributes are built into

this n-ary construct. This level supports an n-ary entity interface,

which returns an entity based on some description of the attributes of

this entity. It also has to resolve certain access path selection

oV 1

p,.26

problems.

The virtual information level provides functions to derive

information which is not physically stored. The validity control level

further implements constraints on updating of the database. These two

levels complete the discussion of database semantics.

In chapter six, we describe the implementation of definitions and

*mappings of external views and control of database security. A

three-level functional structure is discussed. The view translation

level sits in the middle, performing mapping and translation of views.

Three kinds of views are discussed: relational views, hierarchical

views, and network views. It shows, by way of a sample database, how

different views and their operators may be translated.

Below the view translation level, the view enforcement level

integrates all external views and enforces operational access

' constraints. On the other hand, the view authorization level on top of

the view translation level authentiates log-on users and authorizes

views to the users.

Finally, in chapter seven, we conclude this report, and point out

dimensions for further research in the design of the functional

hierarchy.

r/ .. | i " -

p. 27

II. The General Structure of the Functional Hierarchy

Before we go on to the description of individual levels in the

hierarchy, an integrated overview of the stratification proposed is

presented here. This chapter dwells on the recent literature in the

area of database design and database management systems, and its

relationship to the design of the Functionbl Hierarchy.

2.1 Stratification of the DatabaSe Management System

In this section, we shall review two important concepts in

stratification of database management systems. The first one,

represented by the ANSI/SPARC recommendations, emphasizes the process

of data abstraction and a three-level hierarchy of data models. The

other one, represented by the DIAM model, stresses abstraction of

functions. Both have been drawn upon for determining features to be

supported by the functional hierarchy and its architecture.

2.1.1 The ANSI/SPARC DBMS architecture

It is one of the objectives of the INFOPLEX Functional Hierarchy

to be able to support various high level constructs demanded by an

information modeller. In order to design a DBMS that has the

capability to provide many different kinds of views (e.g. relational,

hierarchical or network views) of the database, as well as the

flexibility in the organization and reorganization of the stored data,

INFOPLEX has adopted a DBMS architecture similar to that suggested by

the ANSI/SPARC study group. <ANS175, Yourmark77, Tsichritz78>. Under

V

p. 28

this framework, as shown in Fig 2.1, a conceptual schema is introduced

to insulate view definitions (i.e. the external schema) from stored

structure definitions (i.e. the internal schema). The application

program views are mapped to the conceptual schema, such that changes or

additions of individual views will not affect the definitions of the

others. On the other hand, conceptual schema is mapped to the internal

structure, such that changes to the internal structure will affect only

the mapping between the conceptual schema and the internal schema, but

not the external views. Therefore data independence may be preserved

and protection of existing application programs can be effected. To

serve its purpose, the conceptual schema should have the following

properties:

(1) It is a description of the enterprise that will stay

relatively stable compared to the external or internal schema.

(2) It is capable of expressing high level semantic constructs

existent in the enterprise in order to faithfully model the

enterprise.

(3) It is simple to work with and flexible in restructuring itself

to provide different external views.

A very similar architecture is found in the description of

System R <Astranhan76>. As shown in Fig 2.2, System R has a Relational

Storage System (RSS) which corresponds to the internal level, a

Relational Data System (RDS) which corresponds to the coceptual level,

and various programs run on top of the RDI to support other user

interface.

p. 29

[xtenal External
Model A Model N

External/

Conceptual
--Mapinq

Conceptual
Data Model

Conceptual/Internal Mapping

Stored data base
(Internal Model)

Fig 2.1: The ANSI/SPARC DBMS Architecture

+-Programs to
support various interfaces

-Relational Data
Relational Interface (RDI)
Data System
(RDS)

Relational <- Relational Storage

Storage System Interface (RSI)
(RSS)

Fig 2.2: The System R Architecture

V.

p. 30

The choice of data models has a great impact on the design of

interfaces between levels of the functional hierarchy. We shall

examine, in section 2.2, the significance of choices of data models at

each of the three levels, and approaches taken in the design of the

Functioanl Hierarchy.

2.1.2 The DIAM concepts

Senko <Senko73> has also exploited to a great extent the concept

of stratification in implementing a database system. His Data

Independent Accessing Model (DIAM), as shown in Fig 2.3, has identified

four levels of abstraction for a DBMS: the Entity Set model (the

* info-logical level), the string model (the construct-building level),

the Encoding model (the basic construct implementation level), and the

physical device model. Even though there is certainly a similarity

between DIAM and the ANSI/SPARC architecture, the purpose of DIAM's

stratification is more along the line of abstraction of database
.functions. This results in a further decomposition of its internal

1model, with the emphasis that a higher layer always builds its

functions on top of those implemented at a lower layer. Another

example of stratification of database functions is presented in

<Navathe76> in a more limited context.

2.1.3 The INFOPLEX Approach

The architecture of the Functional Hierarchy strives to achieve

the following features of a DBMS:

p. 31

Real
Info

Concept Names Entity Set Independent
Language

String Model 1
Representation Representation

Names Encoding Model Dependent

Physical Device Language
Model

Fig 2.3: The DIAM Architecture

Data Structure Info Structure

I I I i
Conventional Normalized Schmid; role- Aggregation McLead: Codd: AI:
hierarchical relational Chen: concept generalization SDM RM/T Semantic
or network model E-R Networks
models model;

Senko:
Entity-Set

model

Fig 2.4: Conceptual Data Modeling

yii
.21 .q

p. 32

(1) Support of multiple types of views

(2) Separation of the structure of views (the 'external schema')

and the structure of the stored data (the 'internal schema') by a

relatively stable and simple data model (the 'conceptual schema')

(3) Implementation of various stored data structure techniques

(4) Explicit support for virtual information, validity/consistency

checking and security checking

(5) Support concurrent use of database

In order to achieve these features and at the same time realize

pipelining and functional abstraction in the system, the functional

hierarchy is given the propsoed architecture as shown in Fig 1.5.

2.2 Data Models

From the discussion above, it is clear that selection of data

models at the external, conceptual and internal levels has great impact

on design of the interfaces between levels and functions to be

supported at each level. This section presents an overview of research

in the area of data models and points out approaches to be taken by the

functional hierarchy.

2.2.1 Conceptual Data Models

2.2.1.1 Literature Overview

Recent research in the area of logical data models has followed

p. 33

two directions. One has focused on enriching the conventional data

models (e.g. hierarchical, relational, and network). It is argued

that these conventional models are basically 'syntactic' data models

which suffer from deficiency in semantic constructs. Numerous efforts

have been made to enrich them, especially in the refinement of

relational data model. The concept of 'normalization' in a relational

model is an attempt to understand better the meaning of a relation by

recognizing functional dependencies among the data <Codd72>. Schmid

<Schmid75> further classified relations by 'type'. He suggests that,

by indicating which type (e.g. entity type, association type,

characteristic type) a normalized relation belongs to, the meaning of

storage operations (e.g. insert, delete and update) on the relation

are clarified. This concept of 'type' of relations enrich semantics of

the strictly syntactic structure, and has motivated work on further

normalization <Fagin77a>. The Entity-Relationship model proposed by

Chen <Chen76> is also concerned with an improved modelling technique to

be applied to real world facts. Smith and Smith <Smith77a & 77b> then

added the concepts of aggregation, generalization and cluster

membership attributes. Along the similar line, Bachman <Bachman77>, in

* an attempt to extend the network model, introduced the role concept in

representation of real world entities. A comprehensive discussion of

data model semantic constructs is found in the development of the

- Semantic Data Model (SDM) by McLeod <Mcleod78>, where additional

concepts such as cover aggregation and event-type entities are

included. A recent paper by codd <Codd79> has summarized these

extensions in semantic constructs into a relational model called RM/T.

One way to summarize these developments is to plot them on a

p: 34

one-dimensional chart (Fig 2.4), where at the left end there are

strictly syntactic data models such as conventional hierarchical and

network models, and more semantics are added to the data models as they

progress towards the right, then at the right end of the chart there

will be models proposed in the field of artificial intelligence, such

as the Semantic Networks <Roussop75>, where an effort is made to

provide the user with a powerful set of tools to model real world
1

information as naturally as possible. Data models developed in the

* area of artificial intelligence also strive to provide flexibilities in

naming a certain set of objects, depending on the context of the

application and the angle from which information is viewed.

Another direction of research in logical data models emphasizes

the identification of a basic simple construct. This construct,

sometimes termed "minimum information unit", is simple, with clear and

clean semantics, and may be easily collected in a meaningful fashion to

represent complex varieties in semantic structures. Hierarchical and

network models are considered too complicated for this purpose. They

are not flexible in restructuring themselves to a different view.

N-ary relations (or single-leveled files) and binary relations are more

appropriate for use as the basic construct in this sense. However, the

conventional n-ary relation is plagued by semantic ambiguity

<Schmid75>. All the fields in a tuple are equally associated, while in

the real world, some associations may be direct and others indirect.

Placing all of them in a single tuple may lead to misunderstanding of

the meaning of the information. Even though considerable efforts have

been put in the concept of 'normalized' relations, it is felt that the

best guard against spurious information is a binary association model.

p. 35

It has been argued that the binary association or some close

approximation has much more desirable technical properties than n-ary

relations for use at the logical level <Senko77>. The advantages of a

binary association data model are discussed in <Bracchi76,

Falkenberg76>. Briefly, it is believed that binary associations have

clean semantics, and are most flexible in supporting various external

representations.

2.2.1.2 The INFOPLEX approach

It is not our purpose here to add to the debate of various data

models. However we look into research in this area, and propose the

use of a binary network type of model as the basis for logical design.

The important qualities of a binary network are clean semantics and its

ease in handling multiple-view support and mapping of the internal

representations. In the remaining part of this section, a description

of the proposed binary network model is given, followed by some

examples demonstrating these qualites. We also believe that the binaryAl
construct is capable of supporting more complicated constructs demanded

by some recent data models.

The Binary Network Model:

A visual presentation of our binary network (BN) model is shown in

Fig 2.5. There are four basic constructs. Primitive Elements

represent some objects or facts in the real world (Fig 2.5a). A

Primitive Set is a group of primitive elements that have similar

generic properties and therefore are given a common group name, called

p. 36

Office Autcmation

Decision Support "MARY"

Fig 2.5a: Primitive elements

Off Automation' | i i

U I

,Decision Support , "MARY" '

PRO" 0 M0 (3oE
Fig 2.5b: Primitive sets (Pset)

" - '
Office Automation

II I

Decision Suppo I ,

PRWJ"0=

Fig 2.5c: Binary associations

Office Autaration. IVCHN\

Proj

Fig 2.5d: Binary association sets (B set)-Mi""n-" - %Y

p. 37

a Primitive Set Name, or Psetname (Fig 2.5b). Binary associations are

representations of some real world relationships among primitive

elements from different primitive sets (Fig 2.5c). A binary set is a

group of binary associations that have similar generic properties

(i.e., the incident primitive elements belong to the same primitive

sets, and the associations have the same meaning). It is designated by

a pair of primitive set names and a pair of association names (Fig

2.5d).

In Fig 2.5d, the upper portion* (primitive elements and binary

associations) represents the instance of tie database, while the lower

portion represents the schema of the database. Therefore, the schema

of our BN model is composed of primitive sets (also known as the

'nodes') and binary association sets (also known as the 'arcs').

Further classification of nodes and arcs: In a binary network

schema graph, a node can be either an entity node or a value node. An

entity node serves to tie all equally related value nodes or entity

nodes together. By 'equally related' we mean that those nodes tied to

this entity node are all direct attributes of the entity node, instead

of 'derived' attributes. An entity node corresponds to any set of real

world objects (tangible or intangible) that have some common set of

* attributes which are revealed by the node's binary connections to other

value nodes or entity nodes. It's own identity is reflected by these

associations; i.e., an instance of an entity node does not have any

value or identity, and its designation is made through instances of its

associated nodes. In a sense, the purpose of an entity node is to

collect equally related binary associations to form a semantically

a .*

P. 38

clean n-ary association. Therefore an entity node is also refered to

as an n-ary entity node. Those nodes that are not enity nodes are

value nodes. Value nodes, in contrast to entity nodes, have values

assigned to their instances.

Arcs can further be specified by several parameters. One is the

syntactic function, which is given in terms of 1:1, I:n, n:1 and n:m.

The other, to be specified for each direction of the arc, is the

semantic function, which is given in terms of 'hierarchical' or

'association' 'total' or 'optional', 'candidate key' or 'non-key',

etc. These parameters help further define and clarify the meaning of

the storage operations on these nodes or arcs in our conceptual schema.

For example, the instance of an incident node of a hierarchical arc

depends on the existence of the associated instance at the other end of
I

the arc for existence, while the association arc does not imply this

restriction. A binary network schema with these distinctions is

presented in Fig 2.5e.

* :Conditional Arcs: At the instance level, there are situations

where the existence of an association depends on the value of the

instance of another node. For example, an entity node PERSON may have

an association with a value node TYPE, and if the value of the

associated TYPE of an instance of the node PERSON is 'doctor', then

this instance will have an association with another entity node DOCTOR;

on the other hand, if it is associated with a TYPE 'nurse', it will

have an association with another entity node NURSE. This means that

the existence of the instance of an arc may depend on the value of

another node. We shall distinguish this kind of conditional arcs from

-i

p. 39

(convention

Entiy nde : asoc. H:Hiearcial

Fi .5:Aneapeo aB cNi E#t 1:dn l arcs

p. 40

the unconditional arcs. Fig 2.5f shows a diagram incorporating this

distinction.

We shall conclude the description of the BN model by referring to

its definition language specifications. Fig 2.6 is a BNF expression of

the specification. Specifically, 'Define _Vset' will create a value

node; 'DefineNset' will create an entity node; and the attribute set

in the Nset definition is manifested by creating arcs connecting this

Nset to the nodes that correspond to the domain of the attributes. An

example of a schema definition is given in Fig 2.7a, and its

corresponding node-arc diagram is given in Fig 2.7b. It is believed

that this definition language is very simple to understand and easy to

use.

Implementation: The BN model is implemented at the N-ary level

(the lowest level in the hierarchy that supports 'database semantics').

This level accepts the conceptual schema definitions in the form as

shown in Fig 2.6, and generates the corresponding binary network. It

keeps a catalogue of all the value, binary and entity sets defined in

the schema and interpretes operations against the instances of these

constructs. (More details are given in chapter 5, which describes

implementation of the n-ary level.) The binary network is also made

known to the internal schema designer as a basis for the file and

access path design. The latter is to be specified in an internal

schema specification language implemented at the internal levels. The

binary network is also made known to the external schema designer to

describe different types of views, which are implemented at the

external view levels.

V I

p. 41

4 BN statenent) : Vsetl I 4Nset>
(Vset) Define Vset (Vset name)
(Nset > . =Define N~set (Nset. name, 4Attr list>
4Attr list> 4Attr &scrip> I 4Attr list>'Attr descrip>
4Attrdescrip) :=(attr7 name, (domain , Arc-spec)
<claain name > : Nset. nae Vset name
(Arc spec> := Syn ,Sem , -((equivalenM)], (I opnn
4Syn> :: 1:11 1:nInal nim.
ZSem) :: (Hier>, 4arative Key , condition>
<Hier> : Hier [Assoc
(,Imparative? 'ibtal I Optional
<Key> :=Cand key I lbrkey
condition> : :con> I uncon.
4con> : (attr name, zlink>)
< link) > (literal, Mset name) I a1iky,(tera1, Nset name)
1equivalence> : eq=- Bset._nane req=-Bset nare .Ri
(Eset. nane, : Nset. nane .Attr name I Nset name .op name

Note: 1: [Idenotes optional parameters; terminal symbols are underlined.
2: Bset nane .R refers to the reverse of Bset name

Fig 2.6: A BNF 1specification of the schema definition language

(a) Define Nset (DIP,
(E#,E#,1:l,H,T,K,uncon)
(DEPT,DEPT,n:l,A,T,NK,uncon))

DefineNset (DEPT
(DN,DN,l:l,H,T,K,uncon)
E7M,EMP,l:n,A,O,NK,uncon,e=B2a1P.DEPT.R))

DefineVset (DN)
Define -Vset (EI.P#)

(b) ,,K n

11:1

Fig 2.7a & 2.7b: An exanpie schema definition and it BN graph

p. 42

Examples: Some examples are given here to demonstrate the

advantages of the Binary Network data model:

(1) Clean Semantics: As illustrated in Fig 2.8, an n-ary

relational schema may potentially carry ambiguous information,

while a binary form of the schema eliminates this ambiguity.

(2) Ease of mapping into different constructs: It is awkward to

map an n-ary relational schema containing one-to-many

relationships into its equivalent hierarchical form (Fig 2.9a),

while the mapping is performed more naturally from the Binary

Network schema (Fig 2.9b). Also, since all the binary connections

are explicit, it is easier to maintain certain semantic

constraints. (For example, deleting a product will trigger

deleting of the shipments of that product.)

(3) Ease of mapping into internal constructs: Fig 2.10 shows how

the binary network may be mapped into a variety of internal data

structures by simply specifying how nodes and arcs are to be

implemeted; while this convenience does not exist in most other

types of schema representation.
.a

, Support of rich semantics: This subsection summarizes the BN model's

capability of supporting rich semantics. This is done to show that the

BN model, while parsimonious in its constructs, can be used as the

basic building block for richer models.

(1) multi-valued attributes: This is achieved simply by

specifying the syntactic function of the arc implementing this

attribute to be l:n. No other explicit specifications such as

'characteristic entities' are necessary.

V II ;1'" "-

p. 43

An ambiguous n-ary schema.

AMAnkGM SECETW I (Does the SALARY refer to the
MANAGER's SALARY or the SECRETRY's
SALARY?)

Elimination of ambituity through the use of the binary fonn:

SALW (SAARY refers to the SECRE'ARYs SALARY)

Fig 2.8. Binary network safeguards clean semantics

(a) n-axy relational schema Hierarchical view

STJPPIER;
tI ,,SUPPLIER

aiwithzx ony P£IM

'I-. - Awkwrd-

J/
Fig (b) binary network schema Hierarchical view

I * I Se I 17M

I Si it ' I
l , Semantic-preserved

Sre-orientation of~ ,SHIMET

Fig 2.9 (a) & (b): Binary network facilitates maping of views/

p. 44

- - - - - Becord Segmentation

Stored record 2

Stored record 1

PO r -

ter Re Icord pointer linkage

*INDEX~ InxIga ecr

*flt\ok da, , e ga r

I S

t ' - Pecord integration
31 o

.VI I G

~Fig 2.10: Exampies of internal specification using binary
netw'ork data rmdel

V
JgS

p. 45

(2) aggregation: This is achieved by specifying the domain of the

aggregated attribute to be another entity. (There is no

restriction which says that the domain of an attribute has to be

atomic).

(3) generalization: This is achieved by the conditional arc

property. In the case of a an unconditional generalization

hierarchy <Smith77a>, the association from a node at a higher

level to that at a lower level is based on a conditional arc,

while the association from lower to higher is based on an

unconditional arc. In the case of an alternative generalizaiton

<Codd79>, the associations in both directions may be conditional.

This scheme also implements cluster membership attributes and the

role concept.

(4) hierarchical association: This is achieved by specifying the

arc to be 'hierarchical'. It clarifies the fact that this

association provides external identify to the 'child' node, and

deletion of an instance of the 'parent' node necessitates deletion

of all the associated instances of the 'child' node.

A'

Summary: Our approach bears certain resemblance to concepts of

'atomic semantics' and 'molecular semantics' introduced in <Codd79>.

In that paper, simple n-ary relations are referred to as atomic

semantics, while molecular semantics represent 'bonds' that tie up

atomic semantics to form complex constructs. In a similar spirit, we

propose to use binary associations as 'atomic' semantics. We also move

ahead to show how these atomic semantics are actually implemented at

the internal levels, and how they are collected to realize more complex

logical structures at the semantic construct levels. Moreover, we will

..1

p. 46

sent the formation of different views for the end user from the

underlying binary structures.

2.2.2 The Internal Data Model

2.2.2.1 Literature overview

The internal data model is used to describe physical data

structures of a database. The choice of a physical data structure is

the outcome of a physical database design process, which uses the

conceptual schema and statistics on usage of the database to generate

either an optimized or a 'good' physical data structure. The goal of

physical database deesign is good performance, i.e., good throughput

and response time, under a certain access/update pattern and load on

the database.

The scope of physical database design spans the file structuring

problem (e.g., sequential file or inverted list), the access path

selection problem (e.g., sequential scan or indexing), the record

segmentation and allocation problem (e.g., the number of fields in a

physical record), and the reorganization problem. The problems of

,F memory hierarchies and allocating files among storage devices are

sometimes included in the physical database design, but they are not

addressed at the internal levels of the Functional Hierarchy.

There has been a great deal of research in the area of physical

database design. This results In a desisre to support a large number

p. 47

of data structures in a database management system. A general survey

of these structures is given in <Date77>, and a survey of physical

database design methodologies is given in <Schkolnick78>.

In order to support a large number of data structures, the

internal data model has to be very general, i.e., it has to be a model

through which the various data structures may be described by the user

and implemented by the DBMS. While most of the research in data models

has been dedicated to conceptual data models (as indicated in the

previous section), some prominent ideas have been generated in the

context of the data translation and conversion problems <Smith7l> and

in the development of the DIAM system <Senko73>.

In the DIAM system, the concept of a basic encoding unit (BEU) is

introduced. A basic encoding unit is a unit of data stored in the

computer. It is comprised of control information and a data field.

The former may be further broken down into the identifier field, the

attribute field (i.e. length and encoding type) and the relationship

. pointer field (Fig 2.11). The idea is that, by manipulating

definitions of the control information parameters of a BEU, various

data structures can be realized. This provides a powerful media for

_ describing data structures, and a common basis for implementing them.

The implementation will consist of functions that decode the parameters

and build up data structures accordingly.

The concept of BEU summarized the attempts up to then to

generalize all data structures in a single construct (i.e., an encoding

unit), and allowed variations to be parameterized. Use of the BEU

V
1

•

p. 48

CONTRL INFO.

Fig 2.11: Format of a BEU

p 49

concept is extended and further formalized in a paper by <Fry77>. The

authors of that paper adopted this concept to express the "translator

view" in their data tranlation project conducted at the University of

Michigan. They call it the Logical Encoding Unit (LEU). Several

operations are defined on the basic construct:

1. Collapsing/expanding: this pair of operations encode and

decode data values into bit strings;

2. Extracting (factoring) / dispersing (distribution) : the

first operation condenses the ehcoding unit by bringing common

fields into a catalogue entry. It also may specify how

relationship pointers are expressed (i.e. whether by actural

pointers or by physical contiguity, etc.). The second operation

does the reverse.

2.2.2.2 The INFOPLEX approach

*We have adopted the BEU approach to internal modelling because of

its power and simplicity. It is considered fairly general in its

-,..~ ability to encode various data structures, and at the same time very

n owork with. In chapter four, we will describe how the BEU model

is used to desr- -z d im lement the physical data structures of a

database formatted in terms of the BN conceptual data model.

2.2.3 Multiple-View Support

As discussed in section 2.1, a sophisticated DBMS ought to be able

*~1 9 f

. p. 50

to support different external views of the database. This is important

on two grounds:

(1) Protection of investment in existing application programs:

Most of the existing application programs are either written in a

conventional environment without a database system or implemented

on a database system that employs a different data model (e.g.,

IMS). It is important that a DBMS is capable of 'simulating' the

old data structures so that the exisiting application programs do

not have to be rewritten from scratch. This practical

consideration is critical in implementing conversion from one DBMS

to another.

(2) Diversity in views in different applications and by diferent

users: Each user's view of the real world may differ depending on

the application context and the preference of the individuals. In

<Nijssen76> it is pointed out that selection of an application

data model by the user is analoguous to selection of a religion.

Therefore an effective DBMS should be capable of providing the

'freedom of choice' by supporting diversity of views.

Supporting multiple views requires: (1) view modelling and view

* integration during the logical database design, and (2) specification

and implementation of the mappings between the external views and the

.1 conceptual view. The first one has been discussed in the context of

the logical database design process <e.g., Chen76, Bernstein76,

Navathe78, Vetter77>. In fact, it is very related to the development

of a concpetual data model which must be used to describe the

'integrated view' of the database as a result of view integration. The

p. 51

second one, on the other hand, is an issue in the design of the

database management system, and is to be incorporated into the external

view levels of the functional hierarchy. In essence, the external view

levels are responsible for accepting definitions of the views in terms

of different data models (e.g. relational or hierarchical, etc.) and

their structural and operational mappings to the conceptual schema

based on the binary network model, and translating operators issued

against the external data models to the equivalent conceptual schema

operators. These are problems to be addressed in this section.

Scope of the problem:

In order to clarify the mapping problem, three levels of

complexity of the multiple-view support are defined here:

(1) Subschema: This is the simplest level of the mapping problem.

A subschema is a view that represents strictly a subset of the

conceptual schema. For example, if a relational model is used in

the conceptual schema, the allowable external views are also

relational, and each individual view contains relations that are

subsets (in terms of either degree or cardinality) of those

defined for the conceptual schema. The subschema facility is

extremely useful for security control, and does provide certain

degree of data independence. But it does not provide views

expressed in different data models to fully accomplish the

objectives described in the beginning of this section. Examples

of this kind of facility are DBTG's Sub-schema facility <DBTG76>,

IMS's logical database facility <IMSa>, and System R's view

p. 52

facility <Astranhan76>.

(2) Simulating a different external data model: This level of

mapping actually involves more than one data models. For example,

in the research of the Database Computer (DBC), it has been shown

that the DBC data model can be used to accomodate relational,

hierarchical or network type of external! models by incorporating

explicitly the idiosyncratic information about these external

models into the DBC record-oriented data model <Hsiao79b>.

Another example is the implementation of a non-relational data

model on top of, System R by incorporating a sequence-number field

into the relations <Astrahan76>. This level of multiple-view

support has generally ignored the possible interactions between

different external models due to the explicit altering made to the

conceptual schema. (This is largely due to the fact that the

conceptual schema in question is syntactic-oriented rather than

semantic-oriented.) It is one step above the subschema approach,

but may still not be ideal in supporting multiple types of models

simultaneously.

(3) Transformation: This is the most ambitious level of the

multiple view support, and is the kind that the functional

hierarchy strives to achieve. It supports multiple types of

external data models simultaneously. The basic premise of this

kind of view support is that the conceptual schema is an

embodiment of all the knowledge available, and the external models

are merely different templates for abstraction and transformation

of this knowledge. As pointed out in <Falkenberg77>, the process

Pr-2 T

I , ', o' l .. A. NI I ,, 4 , ' 44N N k 1 .

l''l
4,~S 44y~ 1. r4v N ~ y 4.N 4 'N

I\14-l 'Y'v 4k'.~ 'N AN I4 -I A~ N1 lk I #A IN

04 Av A4l N4

N A It k 4 A It N, 11N AA I V; ' 'v ~ V ' ~ ~ '' l

*,~'.'~4 r I v- v AN A I. V, NO~N'' 4N , 4 y ~ ~ r ~

V4 AN 4k 4

I ' N I. 1 1 ' - 4~ 1r - ' r .- IN 1', ,''v- 4k

4~~~~~~~~~~~ ~~~~~ .4 * qS , . ~ , l -* ~ A~ - IN* 4~4

6L 4

4'4~~~~~4 4. \, k I.'. , 4 4 'N 4 Sv r . ' r A ki' I~4

S . - ' 4' 4 NV 4 4 V ~ 4 '4 41'41 14~ 4 '.V 4 tA.

I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ N k,., ~~ ~~4 N 454~4U~~N44 . ~ 4#

4~~l A1 C' .' - ' 4 ' N 4 4 ~ ' "' 4 I

p. 54

definitions for data model equivalence.

INFOPLEX approach: Support of multiple external data models in

INFOPLEX results in multiple external view levels in the functional

hierarhcy. These levels are basically parallel to each other, rather

than organized hierarchically. Each level is designed to provide all

the views expressed in a particular external data model. Presently,

three data models are supported: the relational, the hierarchical, and

the network models.

In chapter six we shall show how the structural as well as

operational mapping between the three types of external models and our

conceptual schema are specified. Proof of correctness will be

conducted as one of the future research dimensions. Basically, to show

that a mapping is correct, the following is to be demonstrated:

Given a conceptual data model C, an external data model E, a set

of conceptual operators Co;and a set of external operators Eo, we

would like to construct a strucutral mapping language M and an

operational mapping algorithm M such that

_ 1 = M MC)

2.3 Summary

V1

p. 55

We have discussed the formation of the general structure of the

functional hierarhcy in the context of recent research in the database

management systems. We have examined the literature from both

architectural and functional points of view and identified functions

and their organization in the functional hierarchy. Research in the

area of logical data models and physical data models is reviewed to

shed light on the structures to be supported by the levels of the

functional hierarhcy. Finally, the need for multiple-view support and

problems associated with it are discussed.

a

#.

I;

'I

!i/

p. 56

III. MEMORY MANAGEMENT

As described in the previous chapters, the INFOPLEX database

computer consists of two hierarchical components: the storage

hierarchy, which is a collection of storage devices implementing a

large virtual storage, and the functional hierarchy implementing

database management functions. There is a virtual storage interface in

between these two components. We now start at the lowest level of the

functional hierarchy -- a level that interacts with the storage

hierarchy through the virtual storage interface and manages the large

virtual storage address space. We have isolated memory management as a

separate level because it deals with physical memory issues (e.g.

bytes and byte addresses) which are very different from logical issues

(e.g. logical units of data) of a DBMS. This level is depicted in Fig

3.1.

3.1 The id approach

The primary task of the memory manager is to manage a vast volume

of virtual storage while insulating the rest of the system from the

details of virtual memory management. An approach using the data id is

proposed here. We first give a brief description of this approach and

then provide some rationales.

This method divides the entire memory into pages. When a piece of

data is stored in a page, it is given an id. The id comprises the page

number and a pointer slot number within that page. The idea is an

extention of the TID <tuple Id> concept used in System R (Astrahan76).

"V.

p. 57

Higher Level

t Mem Mgt Interface
Mem Mgt local

Processor memory

Storage Hierarchy

Fig 3.1: Memory Management Level

Data id: page h:

data
page# slot# area

kt slo pointer

area

2 -

An pointer slot format:

[Flags offset ptr

Data item format:

length data
field

-Fig 3.2: The id sceme

r '

page h page 1 p. 5

_ _ ! dataj

mth slot

page h page 1 page p

data idd
(b) h. I k < dt

kth slot LIqth slot
qth slot

Fig 3.3: Data item moved across pages with id unaffected

page catalogue

PAGE# RESERVE FSLOT FDATA FSPACE DCOUNT

0

n I k

peciall purpos area

RESERVE: Page reserved for free dataSspecial purpose area

F SPACE: Size of free data area

DCOUNT: -Size of deleted area

FREE_SLOT_CHAIN

Fig 3.4: Keeping track of available storage space

F-iLCLUfl G F bL"I.MI I I

P. 60

(c) The memory manager insulates the 'byte detail' from other

levels, centralizes the memory management algorithms and policies,

and therefore reduces the complexity of other levels and

eliminates contention involved in shared usage of the storage

hierarchy.

3.2 Allocating storage space

When a request to store a data *item is received, the memory

manager has to (1) allocate some free storage to this data item and (2)

store it and update pointers. In order to keep track of free storage

space, the memory manager has to have a catalogue. One method is to

keep a table, in which each page has an entry, which points to the

first free slot in that page. All other free slots of the same page

are chained together. The catalogue also contains an offset of that

page which indicates the starting byte of the free data area. This is

J shown in Fig 3.4.
I

Data items are of variable lengths. Therefore, a length field is

stored with each item. When an id is presented to the memory manager

for retrieval of the Item, the length of the item is first examined and

the number of bytes to be pulled out determined. The length field

itself may be of variable length to accomodate a wide range of sizes of

data items.

For simplicity, a data item Is usually not split across page

boundary. When the size of the free data area of the first available

F

-- , I I T " 0"; ' -:'r ' ' :; ... TM '"

p. 61

page is not enough to store a particular data item, the next page is

approached, until a page that is capable of holding this data item is

found. Another field may be added to the page catalogue, which

indicates the size of the free data area of each page.

3.3 Page reservation and clustering considbration

Even though it is definitely advantageous to have storage

allocation decisions centrally made at the memory management level,

there are situations in which, for practical reasons, certain areas of

the storage space are requested to be set aside by higher levels. Once

pages are assigned to be dedicated to certain purposes, they can no

longer be used for storage of items outside of these purposes. For

example, some pages may be reserved to store only elements of a set

* which are stored according to a hashing function. The higher level

actually calculates the id of a data item to be stored and passes the

id to the memory manager, instead of having the latter assign the id.

Special parameters are incorporated into these commands.

3.4 Virtual Storage interface

It is through this interface that the memory manager interacts

with the Storage Hierarchy. The latter provides a byte-addressable

memory, and STORE/LOAD operations are performed as within a

conventional computer. Details of virtual storage operations are

completely concealed beneath this interface and are responsibilities of

- -lI : I-~T V; r° ...

P. 62

the storage hierarchy. The memory manager simply views itself as

equipped with a memory of a very large size.

3.5 Memory management interface

The memory manager provides the following functions for modules of

higher levels that call for service (refer to Fig 3.5 for their logic):

operations arguments

CREATE (mode, bytestring, idO)

UPDATE (id, new string)

DELETE (id)

RETRIEVE (id)

RESERVE (code, noof pages)

CREATE is invoked when a data item (i.e. a byte string) is passed to

be stored in the database. Other parameters concerning the data item's

storage area may be passed at the same time. There are 3 modes for

CREATE: (1) In Regular mode, the caller does not care where the item

is to be stored.

(2) In Id mode, the caller specifies the Id of the item to be

created.

(3) In approx mode, the caller provides the Id of another item

around which this new item is to be created.

UPDATE replaces the old content of the data element designated via Id

p. 63

with the new byte string passed. If the new string is of a smaller or

the same size of the old one, it is written over the old one. However,

if the new byte string is larger, the area where the old string is

stored is discarded, and a new free data area (preferably in the same

page) is sought to store it. In either case, the id is not affected.

DELETE is effected simply by chaining the pointer slot to the free slot

chain and setting a flag in the slot. The data area freed by DELETE is

' not recaptured until a page compaction module is invoked to walk

* through pages to collect them. In order to facilitate page compaction,

the number of bytes deleted in a particular page is recorded. When

this counter exceeds a critical value, a flag is set for this page, and

a request for compaction is filed (see Fig. 3.4).

In addition to functions that may be invoked through the

interface, there are miscellaneous housekeeping tasks to be maintained.

Page compaction is one, and statistics collection and data

reorganization may be another. Other design issues such as page size,

data area size, sizes of pointer slots and length fields, as well as

whether an overflow area is to be reserved for the page, etc., are to

be discussed in detail design.

One final consideration at this level is the place where the page

catalogue is to be stored. Since the storage hierarchy is directly

accessable at this level, it seems natural to use part of this virtual

storage to store the page catalogue. An adequage number of some

pre-determined pages may be assigned to the page catalogue, and entry

of the catalogue is retrieved by the following formula:

p. 64

base address of catalogue + (page no - 1) size of entry

The structure and information t be stored with the catalogue are to be

determined during the detail design. In general, it opens a question

as to how large catalogues are to be maintained in functional

decomposition, since the set of catalbgues represents a very large

database, and data structure manipulation functions devised to maintain

the database may also be needed to housekeep catalogues. The page

catalogue represents a design problem and different alternatives and

their tradeoffs are to be explored.

2

p. 65

Fig 3.5: operational commands at memory management level
(note: Arguments suffixed by '*' are return arguments)
LOCATE (id, byte addr*, code*)

1. calculate slot addr of id;
2. load content of slot;
3. if free flag set, then code = 'free', and return; else
4. if new page not set, then go to 7; else
5. use info in current slot to obtain new slot address;
6. load content of new slot;
7. calculate addr of data item and store it in byte_addr
8. return (byte_addr, code='o.k.')

CREATE (mode, bytestring, idO, id*, code*
id mode:
1. LOCATE (idO, A, R)
2. if R not equal to 'free', then Return (Code='contention');

else
3. id = idO;
4. F CHAIN('remove', id, l=length(bytestring));
5. LUCATE (idO, A);
6. store bytestring at A;
7. Return (idO, code='o.k.');
approx mode:
8. (assume idO=(pO,kO))

p=pO; l=length (byte_string);
9. if Reserve (p) not set, and Fspace(p) >= 1,

then go to 11; else
10. p=p+l; go to 9;
11. let k=F slot(p) and id = (p,k);
12. go to 4;
regular mode:
13. let p=PAGE;
14. if F_space(p) >= 1 then go to 11; else
15. p=p+l; go to 14;

(Note: PAGE is a variable that points to an
immediately available page)

DELETE (id)
1. LOCATE (id, A, Code);
2. let Ll=length of data element at A;
3. F CHAIN('insert',id,Ll);
4. if new page flag not set, then return; else
5. let idl=id of new slot;
6. F CHAIN('insert',idl);
7. return;

UPDATE (id, byte string)
1. LOCATE (id, A, Code)
2. let Ll-length of data element at A;
3. if Ll>- length (byte_string) then go to 8; else
4. let idO=id and call CREATE ('approx', idO, bytestring, id);
5. if id and idO are of the same page, then update content of

slot designated by idO; and call FCHAIN ('insert', idO, Ll),

- --V

p. 66

and go to 9;
else

6. set new page flag at slot designated by idO;
7. go to 9;
8. store byte_string at A;
9. return;

F_CHAIN(op, id, L) where op='insert ' or 'remove'
assume id =(p,k).
1. if remove op, then remove kth slot from free slot chain.

update F_data(p) by adding L to it, and if p full, declare it;
2. if insert op, then insert kth slot into free slot chain of

page p; increment deletebyte counter by L. If critical
value exceeded, add page p to compaction request queue; set
free flag of that slot.

--

-4i

'I

, V'

p. 67

IV. INTERNAL STRUCTURE

4.1 Introduction

In chapter two, we have discussed the choice of the BEU concept

for internal modelling. We shall, in the present chapter, expand this

concept and show how the internal levels of the functional hierarchy

are designed to support the binary-network conceptual data model with

various data structure techniques.

Our approach produces a gradual mapping of the internal construct

to the conceptual data model. The highest level of our internal

structure, the binary association level, may be viewed as the lowest

level of the conceptual model itself. The data definition language to

be accepcted by this internal structure level is simply the binary

definition loosely coupled with parameters that guide internal

construct building. These parameters are checked for consistency and

then distributed to levels that are of concern. For example,

parameters specifying how many indexes are to be maintained for a

particular set of elements are processed by the unary set processor,

while those specifying how data is to be edited before being stored are

processed by the internal encoding level. It is easy to show that

changes in techniques of internal representation can be accomplished by

changes in the parameter space presented to the internal schema writer.

The parameter space is virtually the collection of tools available to

the database designer. While these parameters may change, the

conceptual definition remains stable. This parameterization approach

is an example of how a true separation of the conceptual schema and the

p. 68

internal schema may be brought about.

In our design, the following specifications are made to the BEU's:

1. A BEU is the smallest logical unit of data to be stored and

retrieved. They are grouped into sets, called Unary Sets A unary

set is a collection of generically similar BEUs. By 'generically

similar' we mean that they share common control information which

has been factored into the catalogue entry of the unary set. The

identifier field (which is used to name the unary set) is replaced

by a link to a catalogue entry (i.e. the identifier field is

'factored'). This link may be a pointer, a table, or via physical

contiguity. It is to be specified by the internal schema writer.

2. Binary relations are implemented by association links. The

meaning of these links are also factored into the catalogue

entries. Binary links may again take the form of actual pointers,

physical contiguity or data duplication.

3. We break the relationship pointer field of the BEU into two

* areas, one called SP area (Set Pointer area) and the other AP area

(Associative Pointer area). It is obvious that an encoding unit

has to exist before its associations to others may be created.

Therefore we follow a natural route that breaks the task of

managing these two types of connection into two hierarchical

levels. One is called the unary set processor level, and the

other, built on top of the former, the binary association level.

4. The stored representation of the data value field of the

encoding unit may be very dlffer~nt from that of the unit being

processed at various levels of the system. This specification, if

--'

p. 69

common to encoding units of a certain set, may be factored into a

catalogue entry of that set. We identify the task of stored

representation transformation as a very different task from the

relationship management. Therefore a level called data encoder is

isolated for this job.

To conclude, the format of our BEU takes the shape as shown in Fig

4.1.

_ 4

*.=. .. . _ . -... ,

p. 70

Header part Data part

itnt PSP 1..IpIa'lP .. IA Data
ied P SP 1 SPn APIAP21 E:

SP Area AP Area

Fig 4.1 Format of a Basic Encoding Unit (BEU)

ir

$ I

U ,, , =,,,,,i

p. 71

4.2 Data Encoding Level

In this section, the data encoding level, and the next one, the

unary set level, the phrase 'set', unless otherwise qualified, refers

to the unary set, while the phrase 'element' or 'data element' refers

to a BEU.

The data encoding level is singled out to implement various

techniques in data encoding and text editing, such as suppressing of

blanks and duplicated characters in the text, other text compaction

techniques, crptographic methods to encode data for protection, etc.

An element to be stored is passed to this level along with the set

it belongs to. A catalogue is t-raversed to determine whether it is a

set of which the data part is to be encoded according to some specified

function. If it is not, the element is stored as it is; if it is, the

encoding function is located and transformation performed on the data

part of the element (refer to Fig 4.1) before it is stored. A flag of

a stored element is set if it has gone through encoding, and a reversed

procedure (i.e. decoding) is followed when this element is retrieved.

4.2.1 Data Definition Interface

A set that requires data field encoding will have an element of

the Encoding Structure Parameter Space (ESPS) coupled in its

definition, as shown in the following:

P. 72

Define-set (Setname, other parameters, u6ESPS).

This parameter u is then given to the data encoding level to build a

catalogue, with the set name serving as the key entry. Various types

of data encoding methods may be precoded into this level, each given a

name, and may be invoked by giving this name. Data encoding is then

accomplished by executing the procedure that implements the method.

To facilitate fast retrieval of catalogue entries, a set name may

be hashed to generate the address' of its catalogue entry. If the

catalogue is small, it may be stored in the working memory of this

level; if it is large, the virtual storage may have to be used to

accomodate it. In either case, an entry is made up of the set name and

encoding method name. The latter is represented by a pointer to a

procedure to be excuted. Procedures, again, may be stored either in

the working memory or the virtual storage.

4.2.2 Operational Interface

Requests to create, delete, update and retrieve an element are

passed down from higher levels. An element is distinctively composed

of a header part,-which is intact at this level, and a data part. Also

passed as an argument is the set name of the element.

In short, this level sits between the unary set processor and the

memory manager to perform transformation of the data field of an

element. Clearly, the system will still function without this level.

p-1
?iL" I I I i " I

p. 73

It represents an option presented to the user. When this level exists,

the encoding methods that it supports may also differ from one system

to another, depending on the needs of the user.

.l

3

1'

0u

I *

p. 74

4.3 Unary Set Level

4.3.1 Introduction

The purpose of this level is to link elements into sets and

facilitate fast retrieval of an element in a set.

The meaning of the "set" may need to be clarified first. Every

data element stored in the storage hierarchy belongs to one and only

one Primary Set. The set processor maintains a catalogue of all sets

defined. These sets may be logical unary sets defined by the user or

sets defined by modules at higher levels to store information for

housekeeping purposes. Therefore, "set", to the unary set processor,

is merely some collection of data elements that share certain common

properties. Every stored element in the database is uniquely

identified by the combination of a set name and the content of the

element.

Every catalogue entry serves as the 'head' of a primary set. An

entry contains information concerning implementation of a set. It

contains a pointer pointing to the first instance of its member, and

other information, such as sort, index, hashing and physical

contiguity, used to implement retrieval mechanisms. The format of a

data element when passed to this level is shown in Fig 4.2.

Together with the element, the set name to which this element

belongs is also given to the set processor. Accordingly, the set

processor pulls out the catalogue entry of this set, concatenates a set

p.,
"" I I~~l 1 I

"
I ~ i

" ' '
' " F '

p. 75

JT gth area Data
If id A are

Header

Fig 4.2: Format of an element as it
is passed through uniary set interface

Header

Fig 4.3a: Format of an element after "SP"
* area is added to it

Catalogue

~AP7JPHAP

Fig 4.3b: Inserting an eleiment into a primary
set

p. 76

chain pointer (SP) field to the element, and inserts this element into

a proper position in the set. This is shown in Fig 4.3a and 4.3b for

sets that are implemented as linked lists.

4.3.2 Primary Sets and Secondary Sets (Subsets)

There are two types of sets implemented at this level. One is the

i primary set, chained by the primary set pointer (PSP). A member of a

primary set is created by actually storing a data element into the data

base.

The other type is the secondary set. Inserting an element into a

secondary set is by way of passing the id of the element (i.e., the

element is already stored), and the secondary set it belongs to. There

is a catalogue entry for each secondary set defining the structure of

the linkage of this set. A set of this type can be considered a

subset, in contrast to the primary set discussed above. This mode of

set processing is very useful in implementing binary associations of

the form l:n or n:l. It makes the retrieval mechanism implemented at

this level available to subsets of elements as well. An example is

given in Fig 4.4.

4.3.3 Catalogue implementation

Catalogue entries by themselves are members of a primary set by

the name of CATALOGUE. Techniques used to implement sets and

p.4

p. 77

CATALOGUE PSP SP, AP DATA

PSP AP DATA
DEPT- b LOA0

JOHN_
Ui DNi IPOLIT-j

unary set STUDENT unary set DEPT

Fig 4.41 Subsets - Binary association between unary sets
DEPT and STUDENT is of the type l:n.
In this example, while SAM and JOHN
have AP's pointing to SLOAN, SLOAN's
AP points to a catalogue entry
SLOAN.ST which chains SAM and JOHN
together with a SP1 .

CATALOGUE INDEX TABLE

SLow Id

Index Pointer

CHRIS id3
J-STUDENT!

EVON id5

id3
AMY CHRIS

d2 4- EV

BOB I D

Fig 4.5ai Sorted linked list and its index table

-7

p. 78

facilities available for search and retrieval at this level can be

employed to process the catalogue as well. To illustrate, the first

Data Definition command to the set processor, DEFINE-CATALOGUE, is a

statement which defines the structure of the catalogue set. Most

likely, for example, the catalogue set is hased. After the structure

of the catalogue set is defined, a command o define a regular unary

set is transformed into an insertion command which inserts the

catalogue entry of this set into the catalogue set; likewise, when a

catalogue entry is to be retrieved, a retrieval command is used to

accomplish this job.

4.3.4 Fast Search Mechanisms

The set processor is responsible for presenting a stored element

to a caller, given its set name and data part. It may also be required

to accomplish sequential retrieval of a particular set. The internal

schema, therefore, specifies how a set is to be implemented in order to

accomplish this retrieval task; for example, whether a sorted linked

A list is desired, whether it is a two-way or one-way link, whether an

index is to be built on the data part (or part of the data part) of the

element, and whether a scatter table is to be maintained for the hashed

data part. If an index is requested, the set members are usually

sorted, and when a member is inserted or deleted, index entries, if

affected, are updated. Other parameters may be added to determine the

structure of the index table. A pointer to the beginning of the index

table is maintained in the catalogue entry of that set. If a scatter

table is specified, the hashing function as well as the beginning of

-1

i p. 7 9

the scatter table are stored with the set catalogue entry. Other

techniques may be incorporated by augmenting the parameter space of the

catalogue entry.

4.3.4.1 Sorting

Sorting is used to facilitate sequential processing and indexing.

A module SORT is used to perform this task. To make this mechanism

more powerful, sorting can be based on the entire data part or part of

the data part. The sort field may or may not be unique. It may even

be desirable that sorting be performed according to the data part of

elements of another set whose id's are part of the data part of the set

to be sorted. These different modes of sorting are specified when sets

are defined, and indices built accordingly.

The sort module is invoked after the database is first loaded.

Then the sorted set is maintained by logic incorporated into INSERT,

REMOVE and UPDATE functions. It may be invoked during the operational

time of the database to reorganize sets that are previously unsorted,

or sorted with another key.

4.3.4.2 Index Table Implementation

Suppose we have a sorted linked list as shown in Fig 4.5a, and an

index table on the right is built for this set. Index table may be

implemented in several ways. If it is by physical adjacency, then the

whole table may be considered as a sorted set implemented by physical

contiguity and stored away. When search in the table is desired, the

Vt

p. 80

entries of the table are retrieved the same way members of a set are

retrieved, and decoded according to its structure parameters (e.g. the

length of each table entry) that are stored with the index table.

Th-se parameters are passed when this set is defined by DEFINE-SET.

* ~ /

Another approach would be to build the index table as a sorted

. "linked list, and then make use of functions designed to manipulate

* linked lists to manipulate entries of the table. A multilevel index

may also be built. If the lower level index table is built as a set,

then the higher level index table is merely an index on this set. An

example of indexing by linked list is given in Fig 4.5b, and a

multi-level indexing example is given in Fig 4.5c.

When removal of an item in an indexed set is requested and if that

element is a member in the index table, the table has to be modifed. A

module that builds index tables (called BUILD-INDEX) is periodically

called to reconstruct the index table as the set is augmented. For

example, a counter may be incremented when a delete or insert is done

on a set, and the module BUILDINDEX is called when this counter

reaches a critical value. During the database load period, this mode

of calling can be suppressed and indices built only after the database

is fully loaded.

Essentially, BUILD-INDEX would visit every element of the set and

select elements at a particular interval to be entries in the index

table.

4. 4.4.3 Hash Table Implementation

P. 81

Catalogue entry Control info. about index

STUDENT NDX
ICHRIS I id3

HRIS id INDEX TABLE

L VON id
i d

i. LCHRI~j

Fig 4.5b: Index table implemented as elements
of a set

Catalogue entry Control info. Control info.

EMPN0 jIndx pt 030 10150|id3|

.. id3

First level Second level
Index table Index table

Fig 4.5c, Multi-level index table implementation

p. 82

The hash pointer contained in the catalogue entry points to a

location where the hashing function and other parameters are defined.

One approach is to assign a certain series of pages that are to be used

to store this particular set. The hashing function is performed on the

whole or part of the data string, and returns a slot number and the

lower positions of the page number as well. The essence is to generate

an id number which belongs to the area assigned to this set. This area

is reserved for this set only and no other sets are to be stored within

".

When collision occurs, either a pointer chain or a linear search

starting from the collided id can be used to handle the problem.

Again many of these properties may be parametarized together with

the internal schema of the set involved. One also has to be careful

when the data part of an element in a hashed set is modified. For

example, if JOHN is modified to be JOHNNY, and if

* H(JOHN)=000

H (JOHNNY)=0907,

then in the new location (0907) a flag is set to point back to the

original. The logic of hashing is incorporated into INSERT and UPDATE.

4.3.4.4 Summary of Fast Search Mechanisms

The salient feature of this level is the fact that approximately

all techniques for internal representation that are geared toward fast

search or retrieval of an element of a set can be parameterized and

incorporated into the structure of the set. What has been shown is an

p. 83

example implementation, in which sets are primarily stored either as

linked lists or by physical contiguity, and search mechanisms include

linear search, indexed sequential and hashing. However, other

facilities may be provided if the parameter space of the structure of

the unary set is augmented.

4.3.5 Data Definition Interface

-I This is the interface across which sets as well as their types,

retrieval mechanism and encoding format are defined. The structure of

the SP area of an element is also given. The data definition language

of unary sets is given in Fig 4.6; a typical definition of a unary set

looks like the following:

DEFINE USET (Uset name, other parameters, xeSSPS, ueESPS)

Where u is to be passed to the data encoding level, and x is processed

and entered into the set catalogue at this level. Two other commands

DELETE USET and UPDATE USET are used to modify set definitions. (SSPS

stands for Set Structure Parameter Space).

4.3.6 Operational Interface

It is through this interface that operational manipulations of

data elements are made. Commands arc provided to insert, retrieve,

delete and update members of sets. Arguments include the set name, id

or data part, and/or header part. A list of commands at this level is

to be found in Fig 4.7. To provide a feeling as to what operations may

.. . . ""V .. " - : - - . . '

SI, , , i : , . :- -,- ,

p. 84

be involved when these commands are invoked, some general logic is also

given in Fig 4.7

4.3.7 Conclusion of Unary Set Level

A summary of modules identified at this level is given in Fig 4.8.

Some modules are implemented on top of others, and inter-connections

between modules are delineated according to the module logic outlined

in Fig 4.6 and Fig 4.7.

.4

S 1 . .'r r"

p. 85

Fig 4.6: DD interface at unary level

(1) Define catalogue: This command defines the
structure of the unary catalogue.

(2) DefineUset (Uset name, x E SSPS, u E ESPS):
This command defines a unary set, where SSPS stands
for Set Structure Parameter Space, which may include
specifications of the following parameters:

a. set type: primary set or secondary set (i.e. subset);

b. set element storage location: this parameter specifies
how the storage location of each element in this set is
determined; there are 3 modes:
(1) id mode: the location of each element in this set is
determined by higher levels;
(2) hashing mode: the location is to be determined by
hashing the data part of the element;
(3) system mode: location determined by element link
described below;

c. set element link: This parameter specifies how elements
in a set are linked together; there are 3 different ways:
(1) pointer: by way of link list;
(2) pointer sequential: by way of sorted linked list;
(3) physical contiguity: by way of id contiguity;

d. index: this parameter specifies the number of indexes to
be built. For each index thus required, the following
information is furnished:
(1) Which part of the element is to be indexed? (It may
either be part of the AP area or part of Data area);
(2) Full indexing or partial indexing? If partial indexing
is used, how sparse is it going to be?
(3) Will any sort previously performed on this set be useful?
(4) structure of the index? (i.e. the location and entry
size, etc.)

e. additional sort and indexing: a set may be sorted (by
link list) based on different keys, and further indexes may
be built. These are specifed in a similar way as described
in d. above.

(3) Update_uset (Usetname, xkSSPS, u(ESPS); and

(4) Delete Uset (Uset name): These two commands effect changes or
deletions of a catalogue entry. The former may force internal
data re-organization, while the latter may involve deleting all
the elements in the set. Ramifications will be studied and
detailed.

V .

Fig 4.7: operational commands at unary level

Create element (Uset name, (AP, data) or idO, id*):
This command creates a unary element.

1. retrieve catalogue entry by
Retrieve element ('data' mode, Uset name, ctl_entry*);

2. decode ctl_entry;
3. case 'set element storage location' of

id mode: id=idO;
hashing mode: do;

perform hashing on data;
generate id;
format SP area and then BEU;
try: try to store this element at location id by

CREATE ('id' mode, return code*);
if return-code = 'contention', then
call Collision Handler(id*) and go to try;

end;
system mode: continue;

4. case 'set element link' of
pointer or pointer_sequential: do;

format SP and BEU;
try to store this element by
CREAT ('regular' mode, id*);
end;

physical cont: do;
obtain Last id and Inc from Ctlentry;
if id out of bound of reserve area of this set, then
call Reservemore;
id=Last id + Inc;
format SP and BEU;
store BEU at id by CREAT ('id' mode);
end;

5. if set element link is pointer then
call Insert (Begpointer, id);
else if set element link is pointer sequential then do;

call Search (Usetname, data, fnd*, idl*, id2*);
call Insert (idl, id, id2);
end;

6. if additional link list sorts and indexes are specified,
then update the lists and indexes;

7. return (Id);

Retrieve element (mode, Uset name, full-data or partial-data or id,
(AP datar, idr)*, code*);

data mode:
1. call Search (Uset name, full-data or partialdata,

fnd*, idl*, id2*);
2. if fnd - null then return (code = 'not-found');

else do;

p. 87

idr=fnd;
call Retrieve element ('id' mode, fnd, AP*, datar*);
return (AP, datar, id);
end;

id mode:
1. RETRIEVE (id, bytestring*);
2. decompose byte string into SP, AP and datar;
3. return (AP, datar, idr=id);

Search-element (Usetname, patial data or fulldata, fnd*,idl*, id2*)

This subroutine locates elements in a set. It is also responsible
for making an intelligent decision about which of the following
access paths to use (if available):

1. hashing
2. indexed
3. indexed sequential
4. binary search
5. linear search

Information necessary for this decision making is stored in the
unary set catalogue. (When only partial data is specifed, and if
more than one elements contain that partial data, all of them will
be located and returned, unless otherwise suppressed by the
caller).

Deleteelement (mode, Usetname, fulldata or partial-data or id,

code*)

This command removes an element or a group of eiements from a set.
If the Uset name is a secondary set, only the connections related
to the secondary set are removed. That is to say, only the part
of the SP of the element that is used to chain this element to the
subset is affected. If the Uset name is a primary set, then this
element is deleted from the database, so are its connections to
all subsets. Special attention is paid to connections made
through hasiing or physical contiguity.

Updateelement (id, new AP, new data)
This command replaces the old content of the element designated by
id to the new content specified within the command.

.!Vd]

p. 88

f~in] Delete_ Update_
jCatalojuej Define_ Uset Uset[j Uset

Buld

Fi S8eUrarch leelsu-md le
Inde

p. 89

4.4 Binary Association Level

4.4.1 Introduction

This level implements binary associations specified in the

conceptual schema. It serves as the bridge between the conceptual and

the internal models. On the one hand, it communicates with higher

levels in terms of 'information units', such as primitive sets and

binary relations specified in the conceptual schema; on the other

hand, it talks to the lower levels in terms of 'stored elements' such

as BEUs and unary sets. The essence of this mapping is briefly

summarized below:

a. A primitive set in the conceptual model is usually (but not

necessarily) mapped to a unary set in the internal model.

Therefore a primitive element is usually implemented by a BEU.

However, there are situations in which a primitive set does not

correspond exactly to a unary set. For example, as will be

explained with details later, when a primitive set is to be

embedded in an associated set, it will not be mapped to a unary

set. Rather, its existence is manipulated through the unary set

that implements the embedding primitive set.

b. Binary associations of a primitive element are implemented

within the AP area of its BEU.

4.4.2 General Mechanism

1 %4

p. 90

The function of this level is to imple.ment binary associations

among primitive elements. It keeps two catalogues; one, called CTLP,

describes the collection of primitive sets defined for the database,

and the other, CTLB, contains information concerning binary relations

among these sets. An entry of the latter is composed of names of the

sets involved in the binary relation, their reciprocol attribute names,

the function type (e.g., 1:n or n:m, etc.), and the association

structure. Based on these structure specifications, unary sets and

their formats are defined.

Recall that a stored element, a BEU, is composed of a Set-Pointer

(SP) area, an Association-Pointer (AP) area, and a data part. The SP

area is created and manipulated at the unary set level, while the AP

area is to be constructed and maintained by the binary association

level. The AP area contains a collection of associative pointers. As

discussed in section 4.1, we have made the distinction between

associative pointers (AP's) and set pointers (SP's) since they

represent different types of connections among data elements. An SP is

used to chain BEUs of the same unary set together, while an AP is used

to connect primitive elements of different primitive sets together.

Function types refer to the way elements of two binary associated

sets are related. There are 4 types: 1:1, l:n, n:l and m:n. In this

design, we have identified 3 different modes of binary association

implementation:

1. Pointer mode: In this mode, 1:1 type is implemented through

--

p. 91

inserting associative pointers into the AP area of the data element.

An association pointer is the id of the counterpart element in this

bInary association. l:n and n:l are implemented by creating a subset.

(Recall that in section 4.3.2 it was mentioned that there are two types

of unary sets, one being the primary set, the other the subset, or

secondary set.) Many-to-may type is effected through a dummy unary set

that incorporates the binary elements involved. These structures are

shown in Fig 4.9a to Fig 4.9c. Note that the subsets may be

implemented as either linked lists or pointer arrays.

2. Physical duplication mode: Instead of storing the id of the

assoicated element, the data part of that element is duplicated in the

AP area, as shown in Fig 4.9d through Fig 4.9f.

*I

3. Physical embedding mode: Under this scheme, the associated data

element is physically stored within the associating element. This

'embedded' element may have'its own identity, in the sense that it

.* belongs to certain primary unary set and is recognized by the unary set

processor, as shown in Fig 4.9g, or it may be a sub-unit, such that its

manipulation always depends on manipulation of the embedding element,

as shown in Fig 4.9h.

4.4.3 Data Definition Interface

Data definitions of primitive sets and binary relations are passed

through this interface. Also passed are values of parameters in the

parameter spaces to be discussed later. Two statements are identified:

I71M

p. 92

id2 JOHN 12FIRST ST CAM

Fig 4.9a: Pointer mode, 1:1 Relationship

SP E01 S IAP E002(EMP #)

element,

P 1 PJ2 (PJ#)

Fig 4.9c: Pointer mode, m:n Relationship (EMPPROJ)

p. 93

EADDR ENM EMP#
SSP Camb, MA Iarea ... E001

Fig 4.9d: Physical duplication mode; 1:1 Relationship

Children EMP#

SP AP .. EOlT

MARY ICH

AP MARY AP RICH

Fig 4.9e: Physical duplication mode; l:n Relationship

I EOPl E0011 A2 E00 2

F P a d i o e Ro 2

~Fig 4.9f: Physical duplication mode; m:n Relationship

-A 6 I II t! II II-I ,II.I II IIIi "II'I III' I II 'I 1

7 AD-AlA 924 ALFRED P SLOAN SCHOOL
OF MANAGEMENT CAMBRIDGE

MA CEN-ETC F/ 9/2
PRELIMINARY ARCHITECTURAL DESIGN FOR THE FUNCTIONAL HIERARCHY--ETCIUI

N OV AG M HSU. S E MADNICK N00039-80-K-IIGB

UNCLASSIFIED CISA MIl S011 05 REEE.EEZE
mEEmhEEmhhhEE

smEEEEEEmhhhE
mEshhmhEmhhEEE
mhEEohhEEEohhE
IIIEWTmomo

p. 95

DefinePset (Psetname, xCSSPS, uEESPS)

Define Bset (Bset name, zeASPS)

ASPS represents the Association Structure Parameter Space, which

specifies the function type, sets involved in this binary relation, and

data structures chosen to implement this binary set. These

implementation specifications provide guidance to the binary level in

building the structure of the AP area of each element. The SSPS and

ESPS are parameter spaces that are processed at lower levels (see

sections 4.2.1 and 4.3.5). The binary level defines the unary sets,

and therefore becomes aware of the existence of these unary sets.

Brief statements of logic of these two definition commands are given in

Fig 4.10.

Binary set definitions may be deleted. When a binary set is

deleted, the primitive sets involved are left intact. On the other

hand, when a primitive set is deleted, all binary sets defined upon it

are deleted. Binary set definitions may also be modified. This

modification may represent a data reorganization at the internal level.

The detailed mechanism of this modification will be studied.

4.4.4 Operational Interface

Through this interface, insert, delete, update and retrieval of

3lements in primitive or binary sets are made.

p. 96

Retrieval of the data base is done in two modes at this level:

(1) Unique and (2) Set mode. Under the first mode, an item that

satisfies the requirement is retrieved. Under the second mode, all

items that satisfy the requirement are retrieved. To facilitate

sequential processing, the first mode is further classified into

self-contained commands and sequential operation commands.

Since the majority of existing database applications are still

very procedure oriented, and not like the higher level query languages

which are relatively self-contained, the sequential operation commands

such as GetNext become a necessity. When such a command is received

at this level, the processor has the need to know what the current

content of that variable is. For simplicity, it is assumed that such

commands will pass information of this sort as part of the arguments,

so that all commands through this interface will be self-contained.

However, this assumption may be modified later for performance

considerations.

At the instance level, deleting an instance of a binary relation

affects only the association structure (e.g. pointers etc.) of the

two elements, while deleting a primitive element deletes all binary

relations stemmed from it. An integrity problem may occur when a

primitive element is deleted. For example, if a primitive element is

implemented by a BEU, then its id may be encoded into the BEUs of many

related elements. If the id of the deleted element is not to be

re-used, the problem is simplifed by setting a delete bit for the id.

However, for efficiency, the id of a deleted element cannot, in

practice, be left unused indefinitely. When the id of a deleted

p. 97

element is re-used, those elements that are originally associated with

the deleted element (and therefore have its id encoded into their AP

areas) now would have a mistaken association to the new element that

has assumed the id of the deleted element. One way to avoild this

problem is to do as follows:

I. Locate the element to be deleted

2. Remove it from the primary set and all subset chains (i.e.,

update the link list of the unary connection)

3. Locate all other associated elements where the id of the

element to be deleted is stored. Set it to null.

4. Delete the element (i.e., set the delete bit and return this

id to the free slot chain of that page).

This integrity consideration also applies to situations where a data

part is physically duplicated within another element. The implication

of this consideration is that the database system has to have the

capability to pull out elements that may be affected when a related

element is changed. This may be accomplished, for example, with

bi-directional vertical linked lists and bi-directional binary

associations (i.e. a complete binary implementation).

The set of commands to be supported at this level is given in Fig

4.11.

4.4.5 Summary

p. 98

This concludes our internal structure design. Higher level

functions are now built on top of these structures, and communicate

with the internal constructs through the interface provided at this

level. We shall see at a later point how manipulation and query

commands are eventually translated into operators that are accepted by

internal constructs.

F

p. 99

Fig 4.10: DD interface at the binary association level

DefinePset(Psetname, xE SSPS, u f ESPS)

log ic:
1. format header according to the structure of CTLP.
2. Create element('CTLP', header, data=Pset name)
3. If this Pset is to be implemented as a Uset then
DefineUset(Uset_name, x,u)

4. return

Define Bset (Bset name, z f- ASPS)
This command defines a binary set. ASPS stands for Association
Structure Parameter Space, which includes the following:
1. names and roles of the two primitive sets involved in this asso
C.
2. function types (e.g. 1:n, n:l, 1:1, m:n)
3. storage mode (e.g. pointer, physical duplication or embedding)
4. the structure of the dummy set if functional type is m:n

logic:
1. check consistency of primitive sets involved in this binary set

against CTLP
2. format z according to the structure of CTLB into Z
3. Insert element ('CTLB', header=Z, data=Bset name)
4. if function type not equal m:n, then go to 6, else
5. Define Uset (Usetname=setl/set2, x3, y3)
6. return

The following commands effect changes in the definitions
of primitive and binary sets:

UpdatePset (Psetname, changes in parameters)

UpdateBset (Bset name, chagnes in parameters)

DeletePset (Psetname)

DeleteBset (Bsetname)

p. 100

Fig 4.11: operational commands at binary association level

Create_p (Pset name,fByte string)
effects creation of an entry in the primitive set named here;
returns an id;

Create b (Bsetname, idl,(data of role2(or id2))
effects creation of a binary association;
optionally returns an id;

Delete_p (Psetname, id)

Delete_p (Psetname, Rel_op, data)
effects deletion of all elements that satisfy
the predicate (relop,data) pair;

Deleteb (Bsetname, idl, (id2(or data2)3 , (ER]

Delete_b_multiple (idl, n, (Bsetnamei, (idi(or datai)) (ER) ,

i=,n))
effects deletion of a binary association:

If UER" is not specified, then only the association
between the two data is deleted;
If "ER" is specified, then the association and the incident data
are deleted;
For one-to-many relationship, the incident data has to be
specified; if not, all the associated data in that Bsetname
are deleted;

Update_p (Psetname, olddata(or id), newdata)

Update_b (Bsetname, idl, id2(or data2), newdata)
updates the content of the incident data

Updateb (Bsetname, idl, id2(or data2), new-id)
updates the association between idl and id2 to be idl and newid

Retrieval of the database is done in two modes : unique, which
retrieves one item at a time, and set, which retrieves a set of
elements. A limited ability to process predicate requirements is
incorporated.

p. 101

unique mode:

Find (Psetname, data, fnd*)

Selectp_first (Psetname, data*, id*)

Select_p_next (Pset name, idO, data*, id*)
retrieves the element that follows element at idO;

Select b (Bset name, datal(or idl), data2*, id*)
Retr-eves the binary associated element of datal or idl in Bset name;

Select b first (Bset name, datal(or idl), data2*, id*)
retrieves the first occurrence of binary associated element
of datallor idl) in bset name;

Select_b_next (Bsetname, datal(or idl), idO, data2*, id*)
retrieves the next occurrence of the binary associated
element after idO of datal in bsetname; (note: meaningful
only when Bsetname is 1-to-many or many-to many)

Select b join first (m, (Bset namei, datai(or idi), i=l,m))
gives The fTrst element thai satisfies m binary predicates;

Selectb join_next (m, (Bset namei, datai(or idi), i=l,m), idO)
gives the next element that satisfies the m binary
prdeicates next to idO;

set mode:

Retrieve_p_set (Psetname, n*, ptr*)
gets the set of element in Pset name; n is the number
of element returned; ptr points to the area where the
whole set can be found;

Retrieve_b_set (Bsetname, n*, ptr*)

Select_p_set (Psetname, relopl, datal, n*, ptr*)
gives the set of element that satisfies the predicate;

Select_b_set (Bsetname, rel_op, datal, n*, ptr*)
gives the set of binary relation that satisfies the predicate;

p. 102

Select b joinset (n, (Bset namei, Rel_opi, datai(or idi), i=l,n))
gives Ehe set of the elements that satisfy the m binary prdicates;

Countp_set (Pset name, n*)
gives the number of elements in the primitive set;

Count b set (Bset name, n*)
counts the number of binary 'tuples' in the binary set;

i:

I

p. 103

V. DATABASE SEMANTICS

Making use of functions provided by the internal structure levels,

3 additional levels are established to build semantic constructs.

These levels enrich the data model and provide a facility for

expressing schema constraints.

5.1 N-ary Level

5.1.1 Introduction

The N-ary level processes constructs defined in the conceptual

schema. The conceptual schema defines the total, integrated 'view' of

the database with clean semantics. The major functions of this level

are the following:

(1) Accept the data definitions of the conceptual schema expressed

in the BN model (as shown in Fig 2.6), check for consistency and

build the conceptual schema catalogue.

(2) Process operations on instances of the conceptual schema.

5.1.2 N-ary Data Definitions

The DD interface consists of the following definition statements:

DefineVset (Vset name, other parameters)

p. 104

DefineNset (Nsetname, (attributename,. y(ATPS)_list) t
where Vset stands for Value Set, Nset for Entity Set, and ATPS stands

for Attribute Parameter Space.

The detailed format of data definitions processed at this level

has been discussed in chapter 2 and shown in Fig 2.6. Either

Define Vset or Define Nset will result in a node being created in the

schema, and each attribute defined in the Define Nset statement will

result in an arc being created. Consistency checking includes such

items as proper equivalence definition, proper domain definition, and

compatible syntax and semantic specification on the arcs. Processing

of a set of data definition statements results in building a set of

catalogues to be used by the N--ary level in interpreting and executing

operations on the database. There are two catalogues to be maintained:

Primitive and Binary. The primitive catalogue contains an entry for

each node defined in the schema, and the binary catalogue contains an

entry for each direction of an arc defined. The catalogues are built

in such a way so as to facilitate cross referencing.

5.1.3 N-ary Operators

In order to distinguish between instances of Nsets defined at this

level and instances of constructs defined at external view levels, the

former is called an entity record from now on. Operators to retrieve

and update the entity records are supported. Again, there are two

modes of retrieval: set mode and unique mode. Set mode will give all

p. 105

the entity records that satisfy the requirement, while unique will give

just one. Sequential operator Retrieve next is also included.

The retrieval operators are listed below:

Retrieve Set (Nset name, attribute name list) WHERE

(attributename, relopr, value) list

RetrieveUnique (Nsetname, attributenamelist) WHERE

(attributename, rel_opr, value) list

Retrieve_next (Nset_name, attribute name list) WHERE

(attributename, rel_opr, value)_list CURRENT IS ((attributename,

value) list)

where rel_opr are the relational operators such as =, >=, >, etc. Also

note that if the 'next' mode is specified, the current content of the

attribute-name list has to be supplied. If the domain of any of the

attribute-name in the list is not a value set, the attributes of that

non-value attribute to be retrieved are specified in the command.

To update the instances of an entity set, one has to be careful in

defining the meaning of the update. (Recall that Nsets defined here

are not restricted to normalized relations). Therefore, the following

rules are imposed:

1. To insert a new entity record (e.g., to add a newly hired

employee's record into the Nset EMPLOYEE), all the immediate

attributes may be passed. Values of a l:n or m:n attribute have

to be enclosed in parantheses. An example is given in Fig 5.1.

2. To delete ar. entity record (e.g. to delete the record of an

p. 106

Suppose we have an n-ary entity set EMP defined as

EMP (EMP#, ENAME, DEPT,CHILDREN);

To create a new employee "Joe John", use the following
INSERT ENTITY statement:

INSERTENTITY (EIMP, EMP#="0907",
ENAME="JOE JOHN",
DEPT="0015",
CHILDREN=("MARY JOHN", "RICH JOHN"))

To add another child to Joe John's CHILDREN attribute, use
the following INSERT ATTRIBUTE statement:

INSERTATTRIBUTE (EMP, ENAME="JOE JOHN",
CHILDREN=("JEFF JOHN"))

Fig 5.1 and 5.2: iNSERTENTITY and INSERTATTRIBUTE

'~~~~~BO III "- - ii ? .. .i l " . ..I iiii iiiiiil li -- IH lil

p. 107

employee who has quit from the Nset EMPLOYEE), only one of the

candidate keys has to be passed. All the rest is done

automatically.

3. To insert or delete an instance of a l:n or m:n attribute

(e.g., to insert a new child into the attribute CHILDREN of the

relation EMP), a candidate key of the entity record and the

attribute instance are given. All 6ther attributes within that

relation are not cited. See Fig 5.2.

5. Updating of any attribute value is done pair-wise, i.e., only

a candidate key of the entity record and the attribute to be

changed are involved each time.

The operators to be supported for update are listed below:

Insert-Entity (Nset name, key value, (attribute,value)_list)

InsertAttribute (Nsetname, key value, (attribute value(s)) list)

Deleteentity (Nsetname, key value)

Delete-Attribute (Nsetname, key value, (attribute,

value(s))_list)

Update (Nsetname, key value, (attribute, old value, new value))

The logic of these operators is briefly discussed in the next

section. The detailed algorithms as well as the effect of these

operations will be studied.

5.1.4 Retrieval Strategy

p. 108

When retrieval commands for entity records are given, they are

translated into operators upon underlying binary associations. These

binary operators are then given to the next level across the binary

association interface. This translation procedure involves access path

selection. Since the attributes of an entity set are implemented as

binary asociations to the entity node, the simplest solution is to

establish the instance of the entity node first, and then follow the

binary associations to obtain its attributes.

There may be different ways to establish the desired instance of

an entity node. Therefore, optimization of the construction effort is

to be considered. In general, a record can be constructed in many

ways, depending on the choice of the starting role and the path to be

followed. To clarify this idea, imagine that the mapping of an n-ary

set to its binary form is to be stored as a tree, where attributes are

represented by nodes. Instances of attributes at higher levels of the

tree are to be established before those of the lower levels of the

tree. Branches represent binary associations in consideration. Then a

natural choice of the tree from of an example retrieval command is

shown in Fig 5.3. However, there are equivalent trees that may

represent exactly the same relation with a different starting role. An

example is given in Fig 5.4. It is seen that the latter graph 'hangs'

the tree in a slightly different orientation and completely changes the

path of construction.

Since the shape of the tree may affect record construction

performance, it is a decision to be made intelligently by a

retrievalstrategy module. The issue may even involve the internal

p. 109

structure, such as indices or sorted lis.ts. To see what all these

mean, we use the above example to illustrate the different construction

efforts that may be involved in these two trees. In the example,

suppose PROJ# is specified in the retrieval command to be the sequence

field. Ideally the system should translate the command into a

procedure such that records are constructed according to the sequence

order. Alternatively, it may sort the records after they are entirely

generated by subjecting them to a sort module. If we choose the second

tree form and, if the unary set 'PROJ#' is sorted in the internal

structure, then records will be generated in the desired order

automatically. On the other hand, the first tree form will not result

in a set of records ordered by PROJ#, therefore requires a further

sort.

Another more obvious consideration would be that, if values of

some attributes are to be restricted (e.g. PROJECT='system'), it may

save some effort if construction starts at the restricted attribute.

Restriction usually takes place when the WHERE clause is used in the

command.

To summarize, the strategy used in this design is listed below;

more examples are also given:

(1) If no predicate is given , the entity record construction

starts from one of the candidate key attributes of the entity set.

(Fig 5.5a).

(2) If a key attribute of the entity is restricted in the

predicate, the entity record(s) is(are) constructed starting from

p. 110

that key. (Fig 5.5b).

(3) If none of the key attributes are restricted in the predicate,

while a non-key attribute is, then there are two approaches:

(a) Locate those unary instances of the restricted non-key

attribute that satisfy the restriction and trace back to its

entity node instance (Fig 5.5c).

(b) Visit every entity in the set. Start from some key

attribute and collect all relevant fields, and then see

whether this entity record satisfies the predicate. Do this

for every entity in the set. (Fig 5.5d).

(4) If multiple non-key attributes are specified in the predicate, the

choice again would be either 3(a) or 3(b) or some combination of the

two.

(5) If sequence attributes are specifed, then there are again two

approaches:

(a) Construct entity records according to the sort order

(b) Construct entity records with another strategy and sort them

at the end.

To centralize this issue of retrieval strategy, a

retreivalstrategy module is singled out. Conceivably, this module can

take advantage of developments in the area of query-decomposition.

(for example, <Yao79, Astrahan76>.)

When a storage operation is given (e.g., insert or delete), the

n-ary level has to carry out its semantic ramifications. For example,

in inserting a new entity instance into an Nset, those attributes that

are declared to be total (i.e., those that cannot have value

MP# PRJ#p.111

NP #PRJ

ADD (I)NAM E-)

FF RA

ADDRMP #

Fig 5.3 & 5.4: Tree forms of access path selection

command: RETRIEVE SET (N.EMP, (EMP#.ENAMIE,DEPT(DEPT#,DNAME)))

loop

Fig 5.5a: Retrieval strategy (1)

command: RETRIEVE UNIQUE (N.EMP,(EMP#,ENAME,DEPT#)) where (EMP#= '0909')

Fig 5.5b: Retrieval strategy (2)

p. I

command: RETRIEVE-SET (N.EMP,(ENAME,ADDR)) where (DEPT(DNAME ='SYSTEM'))

;DNM

'SYSTEM'

EP

1
(1:n loop)

ENMP

Fig 5.5c: Retrieval strategy 3(a)

command: RETRIEVE-SET (N.EMP,(ENAN E,ADDR)) where (DEPT(DNAME ='SYSTEM'))

loop

C>
EMP#Q

ADD

DNAM if 'SYSTEM', then

Fig 5.5d: Retrieval strategy 3(b)

p. 113

'undefined') must be supplied. Also, if it is an instance of a

hierarchical arc, an instance of its hierarchical 'parent' must exist.

As another example, when an instance of an entity is deleted, all the

associations to other instances have to be deleted; and if it is a

hierarchical parent to some other node, the instance of this

hierarchical 'child' must be deleted; and so on. These rules must be

implemented to make sure that database assertions are maintained. (At

the virtual information level and the data validity level to be

discussed later in this chapter certain database assertions that are

not carried out at this level are also maintained.)

5.1.5 Entity record construction

We now show by some examples how an entity record is constructed.

The format of the Nset catalogue and data structure used during

construction are also exemplified.

Suppose we have a database composed of 3 entity definitions as

shown in Fig 5.2c. An example format of the Nset catalogue is given in

Fig 5.6. Then processing the following retrieval command:

RetrieveSet (N.EMP, (EMP#, ADDR, EMPPROF (PROJ (PROJ#,

PNAME) ,TIMEFRAC)))

is equivalent to generating a table of a format shown in Fig 5.7a.

This command is first passed to the retrieval strategy module, which

evaluates the possible access paths. A possible access path is

depicted in Fig 5.7b. It shows a tree diagram that portrays the route

according to which the database is to be traversed in order to carry

S . --

p. IE4

Out the command. A data structure that corresponds to this tree is

then generated by the retrieval strategy module. An example of this

structure is shown in Fig 5.7c. The general logic of record

construction given this data structure is shown in Fig 5.8a, while the

procedure used to carry out this example retrieval command is shown in

Fig 5.8b.

QI

_ ~ ~. . ." , . .° ... 3

p. 115

NsetCagalogue

Nset_nanm No of-attr Ptr-to attr list

PIRXJ 3

Fig 5.6 An exanpie of the format of the Nset catalogue

p. 116

Field no 1 2 3 4 5

Field nairel D 7IP# !4DDR PRJU# PNME TIF

~exampl1e) 0907 Camb 015 System 20%
0908 Lex: 015 System150%

Fig 5.7a: A table to be generated by a retrieval commriand

Fig 5.7b: A retrieval strategy for ccimnand in fig 5.7(a)

NO DCMIN FIED NOf BSETNAME PRE) TIYPE

1 N.EMP Ti - -

2 V.E74IP# 1 EINP.EZIP# 1 1:1
3 V.ADDR 2 B4P.ADMIZ 1 1 :1
4 N.BE4P PRiX T2 EMP. E7PPOL 1 1:n
5 V.TD 5 EMP MiO.T7IF4 1:1
6 N.PR3J T3 EM!PPRDJ.PRONT n:l
7 V.P Wx# 3 PRj. PRJ# 6 1:1
8 V.Pwi 4 PIRJ.PMI 6 1:1

Fig 5.7c: Data structure generated by th-e retrieval
strategy mo~dule -an example of fig 5.7(b)

RecordConstruction (Catalogue, Record-map) p. 117

Begin: Reserve working space WS, ID for the record, and stack ST;

Initiate: /*Initiate the first record */
N=number of nodes to be traversed;

J-Field no (I);
(WS(J),TD(J))=Select e first (Domain(I));
NEXT=2;
Call Rest record;
Call Print record;

Continue: /*Process other records*/
Do until EOD of starting node;

Do while stack not empty; /*checking stack for looping*/
I=ST (SP);

J=Field no(l);
(WS(J),TD(J)))=Select b next (Bset(_I), !S(ered), id =ID(JI);
If not end of data then do;

NEXT=I+l;
Call Rest record;
Call Print record;
end;

Else pop stack;
end;
/* Establish next data of starting node*/
I=i;

J-Field no(I);
CWS(J),ID(J)))=Select e next (Domain(II-id =IDCJj);
NEXT=2;
Call Rest record;
Call Print record;

end;
Return;

Rest record: /*Internal routine for completing a record*t
Do I=NEXT to N:
J=Field no(t);
If Bset(I) is 1:1 or n:l then

(WS(J),ID(J))=Select b.Bset(I1,WSCPred));
Else do;

Push I on stack;
(WS(J).ID(J))=Select b first CBsetCI), tS(Predl);
end;

end;

Print record: /*Internal routine for output the record just constructed*
Print WS;

End Record Construction;

Fig 5.8a: A General Logic for- Record Construction
(Given schema catalogue and record map
produced by Retrieval module)

p. 118

For example, the following procedure will be executed by the

record-construction module when invoked to build the table shown

in Fig 4.7a:

1 /*Reserve WS, ID and ST as follows:*/

1 2 3 4 5 Ti T2 T3 ST

WS EMP# ADDR PROJ# PNAMEITIMEFRAC N.EMP N.E§J N.PRJ I sp--

ID

2 /*Establish the first record: starting node:*/

(ID(Tl),WS(T1) =SELECT E FIRST(N.EMIP)

2.1 /*Next node:*/ (ID~l),EMP#) = SELECTB(EMP.EMP#,WS(Tl))

/*Next node:*/ (ID(2) ,AbDR) = SELECTB(EMP.ADDR,WS (Ti))

/*Next node is EJ, which has one-to-many relationship
with N.EMP a stack entry is made to control the loop*/

ST(SP) = 4

(ID(T2),WS(T2)) = SELECTBFIRST(EMP.EJ,WS(Tl))

/*Next node:*/ (ID(5),TIMEFRAC) = SELECTB(EJ.TM4FR,WS(T2))

/*Next node:*/ (ID(T3),WS(T3))= SELECTB(EJ.PRJ,WS(T2))

/*Next node:*/ (ID(3),PRQJ#) =SELECTB(PRJ.PRJ#,WS(T3))

/*Next node:*/ (ID(4),PNAME)= SELECTB(PRJ.PNM,WS(T3))

3 /*The-1 first record is completed; It is printed; now the next
record:

3.1 Since the stack is not empty, we start from the node to be
looped, which is the 4th node:*/

I=4; J=T2;

(WS(T2),ID(T2)) =SELECT_-B_-NEXT(EMP.EJ,WS(Tl)N,

/*and establish the rest of the record;
continue doing this until end of EMP.E J is
encountered*/

4 /*PpP stack; now that the stack is empty, establish the next data
data of the first node:*/

(ID(TI),WS(Tl)) =SELECTENEXT(N.EPIP, id= =ID(T1))

/*Then complete the rest of the record as in 2.1 and
check stack as in 3.1;

5 Stop when no more EMP# is available*/

Fig 5.8b: An example of record construction

p. 119

5.2 Virtual Information Level

5.2.1 Introduction

Semantic or statistical relationships among elements are often

prevalent in a database. For example, an employee's age can be derived

from his birthday and the current date; the accrued interest of a bank

account is equal to its balance multiplied by the interest rate. If

the derived element is also stored, certain consistency problems may

occur.

There are two approaches to the issue of database accuracy. One

is to maintain a catalogue of consistency constraints as well as some

"housekeeping" routines that traverse the database periodically to

enforce satisfaction of these constraints. Housekeeping routines may

also be invoked when a sensitive data element is to be updated.

Alternatively the DBMS may maintain database consistency by

eliminating from the stored database those data fields that can be

derived from other data. It maintains a catalogue of functions to be

used in the derivation process. This gives rise to the term 'virtual

information', signifying information that is not physically stored but

may be computed. This approach may do away with those housekeeping

routines used in the previous method. However, it adds to the overhead

of computing and recomputing a data field whenever it is accessed.

Also, since they are not physically stored, it is difficult to make

direct retrieval against these fields. For example, a query to get all

the accounts that have accrued interests exceeding a certain level

p. 120

would require that the accrued interest of every account be computed.

The database designer has to take tradeoffs of these approaches into

consideration in making internal structure decisions.

Extending this concept, any information may be 'derived' from

combinations of algorithms and data that is physically stored

<Madnick73>. On one extreme, the informat'ion may be derived purely

through algorithms (e.g. Sine and Consine functions). On the other

extreme, information may be derived through a direct search in the

database (e.g. an employee name given his employee number). In

between these extremes, however, there is information that is derived

through a combination of algorithms and data (e.g., a query on a

person's age is derived by retrieving the current date and his

birthdate from the stored database and then performing a subtraction).

Under this framework, several categories of virtual information are

identified here:

(1) Computed facts: algorithms to compute from stored data;

(2) Representation: data type conversion functions;

(3) Encoding: data string encoding functions.

5.2.2 The General Mechanism

To support the virtual information implementation, this level

serves as a front gate to the level immediately lower to it, namely,

the n-ary entity level.

i- -
"loop

p. 121

It keeps a catalogue of all information that is virtually defined.

Every request to create, retrieve, update or delete a unit of data is

filtered through the gate, and if any virtual information is involved

in the request, it provides functions for the transformation of data.

(1) Computed facts:

Any attribute definition that has its virtual flag (VT) on is

extracted and processed at this level without being passed down to the

next level. The virtual attribute is entered into a catalogue. The

derivation function is also stored along with (or chained to) the

catalogue entry. The function may use both raw data and virtual data

in its algorithm, therefore effects nested virtual information. For

example, the attribute VOLUME is derived from AREA and HEIGHT, while

AREA may in turn be derived from LENGTH and WIDTH.

(2) Representation:

As a request for records is given, the data type of each field is

also given. If it is different from the stored data type,

transformation is done before the element is passed down to the storage

or returned to the requester. Therefore, the virtual information level

has to be aware .of the data types of all the stored elements.

(3) Encoding

Attributes that need to be encoded before they are passed down are

noted at this level. Encoding functions are given. This type of

p. 122

virtual information service is especially useful for encoding data

definition languages (e.g. relation names) before they are processed

by lower levels.

5.2.3 Data Definition Interface

The Data Definition statements of database constructs (Primitive,

Binary or N-ary) that have a virtual flag attached to are intercepted

and processed at this level. The definition statement looks like the

following:

DefineNset (Nsetname, (attributename, y(ATPS, vEVTPS) list)

where ATPS is recognized and processed by lower levels, while VTPS

represents Virtual Parameter Space, and v is decoded at this level; if

appropriate, entries are made in the virtual information catalogue

accordingly.

5.2.4 Operational Interface

The operators are almost identical to those at the n-ary

assocition level. Operations on nonvirtural attributes are passed

untouched to the lower level, while operations on virtual attributes

are intercepted. Encoding of database mnemonics such as Nset or Bset

names is also accomplished at this point. An elaborate catalogue to

record these mnemonic designations is to be maintained.

p. 123

While the derivation function of a virtual attribute can be

changed by updating the attribute definition, the individual virtual

element cannot be updated. (For example, request to update JOHN's age

is to be considered meaningless). It also follows that individual

virtual element cannot, be inserted or deleted; only the virtual

catalogue entry may be thus operated on. Therefore, only retrieval

operations are to be processed at this level.

.. ~,... ~ -

p. 124

5.3 Data Validity Level

The conceptual schema may include constraints on the set of

legitimate values some data elements in the database are allowed to

assume. For example, elements describing a date has to be confined to 1

12 months and 28 to 31 days in the calender; employee's salary data

may not be allowed to exceed a certain maximum; etc. These

constraints uphold the data validity of the database.

Another type of semantic restriction affects the interrelationship

among data elements. For example, a student cannot be allowed to take

courses that have conflicting schedules, or be appointed a teaching

assistant before he clears all the 'incompletes' from the last term.

Another example would be that the total budget of a year should be

equal to the sum of all the allocated budgets of the subordinate

branches. (Note that if a functional (i.e. exactly computable from

one another) relationship exists between data elements, the information

that may be derived needs not be stored, but computed when requested.

This is the task of the virtual information level mentioned in the

previous section). When these constraints are specified, the DBMS has

to translate them into routines that monitor and enforce the

realization of them. Some descriptions of the integrity constraints

are presented in <Eswaran75>.

There are also situations that are allowed to occur, but users are

to be warned or alerted immediately <Morgan75>. A sudden increase in

the death rate at a certain region detected by a system used to monitor

the health management would be an example. The DBMS is expected to

II I~l • - -

p. 125

output the alerting message when 'abnormal' conditions such as these

are detected in the databse.

The data validity, integrity and alerting problems are targets of

the current level.

5.3.1 General Mechanism

All primitive, binary or nary sets of the database that have these

constraints attached are flagged when they are defined. The

constraints, written as part of the data definition, is to be

translated into a procedure that is to be executed at this level,

mostly when update of elements of these sensitive sets are encountered.

Operators implemented at levels below shall be used in the translated

procedures. Constraints may also be specified for virtual attributes.

There are two modes of enforcement: (1) periodic checking and (2)

checking invoked only when data elemnts are updated. In implementing

the first mode, a hardware timer has to be made available. An event

list, sorted by scheduled time of the events is maintained and checked

constantly, either by way of timer interrupt or through the use of a

dedicated processor. If the time of a scheduled event has arrived and

the routine is invoked the next scheduled time for this routine is

inserted into the event list. A message is printed when a database

error is detected, and the error condition may be logged or left

pending for correction.

p. 126

To support the second mode, this level maintains a catalogue of

sensitive database constructs. Any update (including insert and

delete) of an element of these sets has to be filtered through the

procedures that 1) precompute the result, 2) check for legit'..acy of

the result, 3) determine whether to accept or deny the request, and 4)

if a request to be denied, return an explanatory message. For

operations on non-sensitive data, the requests are passed directly to

the next level.

How to select the mode of constraint implementation is, again, a

DB designer decision, which has to have situational factors taken into

considerations.

The simplest type of constraint would be the data type, i.e.,

whether it must be numeric or alphanumeric. More strict constraints

may be specified in terms of 1) the range of values allowed for a

continuous data element or 2) a catalogue that contains a set of

legitimate values of a discrete data element. When inter-relationship

is a consideration, the procedure has to retrieve other data in the

database in order to do the computation.

5.3.2 DD Interface

The most complex problem at this level is the data definition

interface where by the specification of the validity and consistency

constraints are crossed. Commands are also available to make changes

to these constraints.

p. 127

DefineVset (Vsetname, other parameters, w VLPS) or DefineNset

(Nsetname, (attributename, w VLPS, v VTPS, y ATPS) list)

where VLPS stands for VaLidity Parameter Space, to be intercepted and

interpreted at current level, while parameters in the rest parameter

spaces are passed down. (See section 5.1.2 and 5.2.3 for explanation).

5.3.3 Operational Interface

Commands to manipulate data elements are passed through. The

operators are identical to those to be accepted by the next level, and

checking is performed for sensitive data sets.

I|

p. 128

VI. USER VIEWS AND DATABASE SECURITY

6.1 Introduction

The conceptual schema designer may have structured the information

into entities and attributes. Operators to operate upon these

constructs are implemented in the levels below. End users of the

database, however, may see a structure of the data that is different

from that of the conceptual data model. In particular, they may want

to look at the data as organized into a different set of relations or a

hierarchy of segments. They then choose various sublanguages

accordingly to operate on these "external constructs". In this manner,

the end user is allowed to look at data in a way most natural to his

application and choose a data sublanguage that he feels most

comfortable to use. In addition, existing application programs are

protected from becoming obsolete due to changes in data structure.

These different ways of looking at the structure of the database

constitute different "user views", also called "external views", of the

database. To support external views, these views have to be defined

and mapped onto conceptual structures. Operators performed upon

external views have to be translated into operators upon entity sets

defined at the conceptual level.

In addition to providing user views, the DBMS is also required to

maintain database security. Database security refers to the control of

access to the database. Since an integrated database is accessed by a

number of users, and since each of them may be granted permission to

p. 129

only part of the database, the DBMS has to have the capability to

identify a user, determine his access limitations, and accept or reject

an access request. Furthermore, permissions may be differentiated in

terms of Read and Write. There are generally two approaches to

maintaining database security control <Hsiao79>. The first one is by

way of view definitions, and the second one is through query

modification. Here we choose to use the first approach.

We have identified a three-level hierarchical structure for

handling user views and security control. At the top, the View

Authorization Level authentiates a log-on user and authorizes the user

to a particular view. Next, the View Translation Level keeps track of

mappings between constructs defined in external views and the

conceptual schema, and translates the operators. Below it, the View

Enforcement Level checks for legality of the operation of a view.

Before going into these individual levels, a formal definition of

mapping between external constructs and conceptual constructs is given

in the next subsection. To illustrate transformations in a coherent

fashion, a single database example is used throughout this chapter.

The conceptual definition of this example database is shown in Fig

6.1.1.

6.1.1 Mappings

Mapping herein refers to the correspondence between an external

scehma and the conceptual schema. One of the reasons why we choose to

fr •

p. 130

DATABASE EMPASSI'GNMENT

CONCEPTUAL DEFINITION:

EMP(E#, EN,ADDR,DEPT,E P, JB HSTRY,MGR OF,PRJ=E P(PRJ)

DEPT (D# ,DN,LOC, EMP)

PRJ(P#,PN4,MG3R,EMP=EP(EMP),EP)

EP(E.MP,PRJ,TIMEFRAC)

JH1(EMP,JOB,DATE)

JOB(JB#,JBN,JB HSTRY)

Primitive/Binary Data Structure Diagram of EMP ASSIGNMENT:

JOB _- -P(MR

Fig 6.1.1: An example database

p. 131

use binary relations as the underlying conceptual structure, as

mentioned earlier in section 2.2, is for its flexibility in

transformation (or "deconceptualization"). In our system, mapping is

provided for constructs in three different external data models, or

"types of views", namely, the relational, the hierarchical, and the

network data models. Constructs in these models are mapped using a

common mapping language which describes any external construct in terms

of the following conceptual constructs:

(1) Entities and their direct attributes or derived attributes;

(2) Binary relations between entities and/or attributes;

(3) Predicates restricting above constructs;

In essence, any external construct (e.g., a relation or a segment) is

to be mapped to a portion of the integrated database described by the

conceptual schema, and the mapping statements specify this "portion".

The BNF specificatin of this mapping language is given in Fig 6.1.2a.

Some examples of mapping language statements and their corresponding

graphical representation, called the tree form of the mapping, which is

basically a "clipping" of the data structure diagram of the integrated

conceptual schema, are given in Fig 6.1.2b.

k ., , .~ ~ : - -:' '" ""
", - e- -I " ll " (.

p. 132

Mapping-statement : Entity statementl Binarystatement
Entity_statement :t= Entity attribute clause, predicate clause
Entity-attributeclause ::= Nset name Tattr list)
attrlist := attrphrase attrlist attr phrase
attr phrase .. attr name j attr name(attrphrase)
Binary_statement :s Nset name (attr-phrase)
predicateclause :s (condition list)
condition list t:= condition Fcondition list condition
condition* :z= attr phrase, compop, targetphrase

targetphrase :: variable name Iliteral

*g Conditions can be further elaborated to include set-theoretic
comparisons.

Fig 6.1.2a: A BNF specification of mapping language

p. 133

(1) External construct e1 mapped to unrestricted entities
and attributes:

eI EMP(EN,ADDR,DEPT(D#))

treeform:

(2) e2 mapped to restricted entities and attributes:

e2 = PRJ(PN,P#) WHERE (EMP(EN)=Var.EN)

treeform: PRJ

(3) e3 mapped to a binary relation

e 3 = EMP(JBHSTRY)

treeform:

Fig 6.1.2b Mapping statements and their 'treeform' graph

p. 134

6.2 View Enforcement Level

6.2.1 Introduction

This level integrates and coordinates all external views. It

performs two major tasks: (1) process operational security parameters

of the views and check for compatibility of these parameters among all

views; and (2) enforce these operational security requirements.

The first task is performed during view definition. It enables

the DBMS to identify conflicts or inconsistencies among different

views. A conflict of this kind occurs when one view designates a

portion of the integrated database to be of its own exclusive use,

while another view attempts to include that part of the database into

its domain. These conflicts are not easily detected at the view

translation level because, as will be explained later in this chapter,

views are not made to communicate with each other at the view

translation level. The view translation level performs mapping of

constructs and translation of operations in each view independent of

the existence of other views. On the other hand, constructs and

operations are expressed in terms of the common conceptual data mudel

when they reach the view enforcement level, therefore coordination can

be facilitated here. This is graphically shown in fig 6.2.1.

f The second task of this level is performed during database

operation. All operations on a particular view, after being translated

into operators on conceptual constructs by the view translation level,

are checked against the security parameters maintained at this level.

p. 135
(Next
Higher
Level)

Hier rchical Rela N*onal
ViewFView ie -VIEW

TRANSL-
iew-1Level

.- v:VIEW
>0 ~. - -ENFORCEYIPP7

Fig 6.2.1 View Enforcement Level integrates
and coordinates views

CONCEPTUAL_
VIEWS CONSTRUCT

0

attributes construct other
sefg~jgtersattributes

Fig 6.2.2: Catalogue structure at View
Enforcement Level

p. 136

6.2.2 General Mechanism

This level accomplishes its tasks by maintaining a catalogue,

which contains information on views and conceptual constructs. It

lists, for each conceptual construct (e.g., entities and attributes),

the views that are allowed to read, write, share or exclusively use the

construct. This enables the current level to identify conflicts

between views and generate messages to effect intervention by a data

base administrator to resolve the conflict. On the other hand, this

information is also used during database operation to prevent a user

from issuing operations not allowed within the view he is using.

This catalogue itself can be defined as entities and attributes.

Two basic entities are VIEWS and CONCEPTUAL CONSTRUCT. A third entity,

called SECURITY, may be used to designate the many-to-many relationship

between them. The binary network model of this catalogue is shown in

Fig 6.2.2. This strategy of catalogue implementation makes use of

functions provided at lower levels and releases the burden of catalogue

maintenance from the view enforcement level.

6.2.3 Data Definition Interface

There are two parts in this interface. One is the conceptual

schema definitions, whereby the view enforcement level obtains all

construct names in the conceptual schema. More complicated parameters

embodied in these conceptual schema definitions (such as virtual

information and other semantic parameters) are of no concern to the

p. 137

current level, and are passed down intact. The other part of this

interface is the view definition, which consists of identification of a

view and the corresponding conceptual schema this view is mapped to, as

well as security requirements. The current level builds its catalogue

using this information. The data definition interface is shown below:

DefineNset (Nset name, attr list)

Define-View (View id, conceptualconstructlist)

where the conceptual construct list is a list of conceptual constructs

the view is mapped to and their corresponding operational security

parameters.

6.2.4 Operational Interface

Operators to manipulate conceptual data elements are passed

through. The operators are identical to those to be accepted by the

next lower level, except for a tag which identifies the view based on

which this operation is issued. Security checking is performed to

enforce legality of this operation, and unauthorized operations are

denied.

'J" ~~...........-Illll....

p. 138

6.3 View Translation Level

This level incorporates several parallel modules, called external

data model processors, each designed to handle a particular type of

views, or external data model. In this section we describe mapping and

translation from three data models, relational, hierarchical, and

network, to the common conceptual data model. We shall illustrate how

the mapping language introduced in section 6.1.1 is used to map

constructs in these external data models, and how operators in these

models are translated.

I

6.3.1 View Translation Level -- Relational View

6.3.1.1 Definition and Mapping

Relational views are defined in terms of relation names, domain

names, attribute names and sequence attribute(s) (i.e. the attribute

according to which the relation is to be sorted, if any). The mapping

of these names to the conceptual constructs are also specified. Data

types may be declared to be different from the form physically stored.

The relation name gives rise to an entry in the relation catalogue,

where information about this relation and its mapping is stored.

Since each attribute in a relation has to be atomic, an attribute

name has to be mapped to a value set. The relation definition and

mapping may take a format exemplified in Fig 6.3.1a, and Fig 6.3.1b

shows the tree form of the mapping. Due to the great similarities

between the relational data model and our conceptual n-ary entity sets,

p. 139

Relational View

E4P

E#IEM4 _ADDR DPT

DEPT EP P1J

PROJ JOB HISTRY

JP# IPNM MGR E E# I TB# DAT

JOB

JB# IJ=BNMA

Relation definition and mapping

Define Relation EMP(E#,Ea4,ADDR DEPT#)
= P (E#,EN,ADDR,DEPT(D#))

Define Relation DEPT(D#,DNZ1,LOC)
=DEPT (D#,DN, IIC)

Define Relation PROJ (P#,PNI, MGR E#)
= PRJ (P#,P_, MGR(E#))

Define Relation EMP PROJ (E#, P#,!RC)
= E P (EMP(E#), PRJ(P#),TIMEFRAC)

Define Relation JOB (JB#, JBN4)
= JOB(JB#,JBN)

Fig 6.3.1a A relational view of the EMP ASSIGNM24 database

p. 140

Mapping tree form for relations EMP, DEPT, PROJ & JOB:

PR

//
/

JB# / ADDR / -
/ J I Q

EMP N,

J O B I \

D# I

/ lDEPT

Mapping tree form for relations EMPPROJ & JOBHISTRY:

TI
J#E# FRAC

N I

JOBHISTRY EMPPROJ

Fig 6.3.1b: Tree form of the relational view of EMPASSIGNMENT

p. 141

mapping and translation of operators are fairly straightforward.

6.3.1.2 Tuple Construction

In our model, actual construction of the tuples does not take

place when the relation is defined; only the mapping is stored with

the relation name. Tuples of a relation are built one by one when an

output command of the relation is encountered. It is built by passing

n-ary entity retrieval commands extracted from the mapping definitions

down to next levels. Because no relations are built when they are

defined, redundancy of data is completely eliminated. Again, there are

no restrictions on the normality of the relations.

6.3.1.3 Operations

Relational operator JOIN, SELECT, SELECTWHERE, INSERTTUPLE,

DELETETUPLE, and UPDATETUPLE are supported. Get next tuple is also a

command available for examining tuples one by one. This section

describes the general logic how these operators may be translatco and

performed.

JOIN, SELECT and SELECTWHERE commands are set operators that give

rise to new relations. These relations, as usual, are not constructed,

but their mappings are generated automatically and then stored. In the

following discussions, the effect of these operations is exemplified by

the tree form of the map.

p. 142

JOIN operation involves joining two relations over a common

domain. An Example is given in Fig 6.3.2.

SELECT operation would result in a 'pruned' tree, as shown in Fig

6.3.3. Note that selection that incorporates lower level roles

but eliminates some intermediate level role would result in the

latter being marked in the tree, but not eliminated. The reason

for this is that, if we eliminate the intermediate level from thej tree, the semantics of this relation may become ambiguous. In

this example, if a command SELECT (R, (EMPNO, LOC)) is given, the

Iresulting relation shall have a form as shown in Fig 6.3.3b, while

the tree shown in Fig 6.3.3c has an ambiguous semantics between

the node EMP-NO and DEPT.

SELECTWHERE is used to impose restrictions on values of certain

attributes in a relation; this command is easily implemented by

incorporating this restriction into the mapping tree. It is

readily translated into Retrieve commands with WHERE clause

implemented at the n-ary level. An example is given in Fig 6.3.4.

Due to semantic considerations, the update commands are restricted to

normalized relations. However, if this restriction is lifted, other

measures may be taken to remedy the semantic ambiguity.

INSERTTUPLE: Inserting a tuple into an n-ary relation is

equivalent to inserting a record into an nary entity sets. This

command is translated into Insertentity or Insertattribute,

depending on the context.

DELETETUPLE: Deleting a tuple from an n-ary relation is treated

p. 143

R =JOIN(EMP,DEPT,OVERD#)

.R(E#,ENM,ADDR,D#,DNM,LOC) =EMP(E#,EN,ADDR,DEPT(D#,DN,LOC))

Fig 6.3.2: Join operation results in a joined tree

RI= SELECT(R,(E#,D#,LOC))

EMP

LLOC

.R2 = N.,LC)EMP(E#,DEPT(I
~~~Fig 6.3.3: S3imr elnot topberto reut Fig ac A'biguou tree ma

ouSEEtut EOC)R SLC(lEO)

EMP



p. 144

R3 = SELECT (R, (E#, D#, LOC)) WHERE
(Lc = "Ngl YORK")

(Restricted by
= "Nq YORK")

* R3(E#, D#, 1lC) = EMP (E#, DEPT(D#, LOC))
WHERE (DEPT(LOC) "NEW YORK")

Fig 6.3.4: SELECT WHERE operation



p. 145

as deleting the entity designated by the key of this relation from

the corresponding entity set. (It is clear at this point why a

normalized relation should be referenced. Suppose that the

relation is not normalized. Then one might ask the question:

"what exactly does this user want to delete from the database?"

Note that, in a tuple where several entities and binary relations

are involved, removal of any of these would result in removal of

the tuple.) This command is translated into Delete-entity or

Deleteattribute, according to the context.

UpdateTuple: This operation may be translated into a sequence of

Update commands to be passed down to the n-ary level.

6.3.1.4 Defining Relations Using Relational Operator

New relational views may be defined by commands JOIN, SELECT and

SELECTWHERE. A relation generated by these commands would be

considered a temporary one, therefore not entered into the permanent

relation catalogue unless attempt to save it is made. Once a relation

is saved, it may be treated as a view, and other users may be granted

access to it oy calling the relation name and satisfying the access

constraints. Therefore two commands are also available at this level

to dynamically. add entries to or remove them from the catalogue of

relations:

SaveRelation Rel_name, access constraint parameteres

DeleteRelation Rel name

LI



p. 146

where access parameters are extracted and processed at the next higher

level, namely, the view authorization level.

6.3.1.5 Relational Sublanguage

The relational operators just described are used to manipulate

relations in our model. However, the end users may still find them

cumbersome to use, and query or manipulating languages of an even

higher level, such as SEQUEL <Astrahan76>, may be desired. The

database sublanguage facility, which will be described in section 6.4,

provides translators to facilitate ease of user interface.

Operations other than those described here may be added (e.g., an

operator that tests to see if two relations are equal, etc.). Due to

the modularity of the system, the current repertoire of operators may

be easily expanded to accommodate future needs.

i



p. 147

6.3.2 View Translation Level -- Hierarchical View

6.3.2.1 Definition and Mapping

This type of external structure may be treated in a similar way as

the relational structure. When the data definition and mapping of a

hierarchy of segments are received, they are translated and stored in a

catalogue. To illustrate, we again adopt the EMPASSIGNMENT database

example shown in Fig 6.1. Now suppose a hierarchical view of this

database, as shown in Fig 6.3.5, is to be generated. The definition of

the view, which is very similar to an IMS type of DDL <IMSa>, with the

addition of mapping specifications, may look like what is shown in Fig

6.3.6. Taking these definition statements as input, the DD translator

may translate them into a set of parameters to be stored in the

hierarchical view catalogue. A tree form of this hierarchy is shown in

Fig 6.3.7.

6.3.2.2 Basic construct At Work

Comparing Fig 6.3.7 with tree forms demonstrated when we were

discussing relational views, one may see how underlying binary

relations may be used freely in constructing views. In essence,

primitive and binary sets serve as the basic construct of the database,

which are flexible enough to be built into any kind of external

expressions, and has the property of relative stability over time.

Another benefit that may be read from these figures is the clear

---------------------------------



DEPT p. 148

D# DZ.1 LOC

EMP 1:n

E# ENM ADDR

PROJ FJOB HSTR

P# ]PN TMFR MGR J# JNM DATE

Fig 6.3.5: A Hierarchical view of EMP ASSIGNMENT

HIERARCHY NAME = EMPASSIGNMENT;

SEG NAME = DEPT, BYTES = 45,

FIELD NAME = D#, CHAR 5, SEQ,
FIELD NAME = DNPI, CHAR 20,

FIELD NAME = LOC, CHAR 20;

SEG.DEPT = DEPT(D#,DN,LOC) SEQ(D#);

SEG NAME = EMP, BYTES = 45, PARENT = DEPT,

FIELD NAME = E#, CHAR 5, SEQ,

FIELD NAM = ENM, CHAR 20,

FIELD NAME = ADDR, CHAR 20,

PARENT(DEPT)- CHILD(EMP) = DEPT(EMP)

SEG.EMP = EMP(E#,EN,ADDR) SEQ(E#);

SEG NAME = PROJ, BYTES = 33, PARENT SEG.DEPT

FIELD NAME = P#, CHAR 5, SEQ,

FIELD NAME PN, CHAR 20,

FIELD NAME MGR, CHAR 5,

FIELD NAME TMFR, 13

PARENT(EMP)- CHILD(PROJ) = EMP(PROJ)

SEG.PROJ = EP(PRJ(P#,PN,MGR(E#)),TIMEFRAC)

SEQ (P#)

SEG NAME = JOBHSTR, BYTES = 31, PARENT = SEG.EMP

FIELD NAME = J#, CHAR 5, SEQ,

FIELD NAME = JN, CHAR 20,

FIELD NAME = DATE, 16,

PARENT(EMP)- CHILD(JOBHSTR) = EMP(JH)

SEG.JOBHSTR = J_H(JOB(JB#,JBN),DATE) SEQ(JB#)

Fig 6.3.7: A tree form of Hierarchical view

- -, ' . --. 3* . - . ,.-, . . *'.



p. 149

I IT

AE#

FiE..: AtrefrNfHerrhclve



p. 150

semantics in an external view derived from binary associations. Not

only may it help the DBA in clarifying the path during data definition,

it also provides better documentation of the meaning of a database.

6.3.2.3 Operations

Conventional hierarchical operators GETUNIQUE, GETNEXT

GETNEXT WITHIN PARENT, DELETE, INSERT and REPLACE are supported.

<IMSb>.

(a) GET commands

GET commands invoke the segment construction module which, by

looking at the map and the content of the current buffer, determines

how various data elements are to be retrieved and placed into output

buffer. For example, a typical IMS retrieval command against our

example database:

GU DEPT(DNAME='system')

EMP

JOBHISTRY(JOBNAME='programmer')

may be translated into operations on the nary entity sets, as shown in

Fig 6.3.8.

(b) Update commands

i .



p. 151

Retrieveunique (J H (JOB (JB#,JBN), DATE))WHERE
(EMP(DEPT(DN="SYSTEI"))) AND (JOB (JN ="PROGRA4ME"))
SBQ (EMP(DEPT(D#),E#))

Ihe tree form of a strategy to satisfy this requst is:

DIIP

Fig 6.3.8: GU oe-ration; tree forA of the retrieval



p. 152

Insertion of a segment is broken down into compatible

Insert-entity and Insert-attribute commands. However, semantics of

DELETE and REPLACE operations may need to be clarified in order to

ensure proper update of the database. These issues are, again, similar

to those discussed under relational views, and require special

attention during design of data definition and manipulation languages.

(C) "Subschema"

A subset of a hierarchy of segments may also be defined to

generate various views on this hierarchy. DDL is input to specify the

name of the new 'subview' to be defined, as well as its connection to

the original hierarchy. Access information is also given. Then this

'subview' is entered into the catalogue and may be operated upon by

legitimate users.

I
I

• i



p. 153

6.3.3 View Translation Level -- Network View

6.3.3.1 Definition and Mapping

In this section we discuss definition and mapping of network views

<DBTG71>. Based on the conceptual definition of the database

EMPASSIGNMENT of Fig 6.1, the system would like to present to the user

a DBTG type of network view as shown in Fig 6.3.9a. The definition and

mapping language is shown in Fig 6.3.9b. In essence, the records

defined in the network are mapped to entity sets, their identifiers

mapped to key attributes of the entities, and DBTG 'sets' are mapped to

underlying binary associations. A tree form of this mapping is shown

in Fig 6.3.9c.

6.3.3.2 Operations

Operations on a network view include <Date77>:

Find: Retrieves any record or a specific record within a set

Modify: Writes content of a record back to the database

Insert; Insert a record into a set

Remove: Removes a record from a set

Delete: Deletes a record from the database

Store: Inserts a record into the database

The 'currency' concept used in DBTG model is utilized in the tranlation

of these commands. The user is given a UWA (User Working Area),



p. 154

DEPT

ID# jDNTW4E ILOC

SD E

Fi 63.a:A ~t EkPv~o 1 ~'P .SIDJ N atbs

JO 3



p. 155

NIOWK)R E ASSIGNMEW

RECORD DEPT, IDENT IS DEPT# IN DEPT

02 DEPT#, CHAR5
02 DNAME, CHAR20
02 tLJC, CHAR20

* REC.DEPT = DEPT(D#,DN,IOC);

Fd=RD EMP, IDENT IS EJ # I N

02 EMP#, CHARS
02 EIA, CHAR20
02 ADDR, CHAR30

* RMC.MP = EIMP(E#,EN,ADDR);

REXORD JOB, IDENT IS J# IN JOB

02 J#, CHARS
02 JN, CHAR20

* REC.JOB = JOB(JB#,JBN);

RECORD JB_H, IDENr IS J# IN JOB, EMP# IN EMP

02 J#, CHAR 5
02 EM4P#, CHARS
02 DATE, CHARS

* REC.JB H = J__H (I4P (E#), JOB (JB#), DATE)

SET S_D_E, ONER IS DEPT, MEM4BER IS 34P

* SET(S_D_E) 0 -b M = DEPT(EM4P)

M- O = E4P(DEPT)

Fig 6.3.9b: An exanple of data definition and mapping of
a network view



p. 156

Tree form of DEPT record:

DN Inlc

Treeform of ET4P record:

Treeform of SDE set:

(oepm)ir j (M.o)

Fig 6.3.9c: Treeform of a newtork view of EVP ASSIGMEW



p. 157

containing a buffer for every record type defined in the view. The

content of this UWA, together with the mapping definition, is used to

generate retrieval/update commands against the nary entity level. To

illustrate, suppose that the network and mapping definitions are stored

in a data structure exemplified by Fig 6.3.10. During run time, a UWA

buffer is reserved as shown in Fig 6.3.11; and the basic logic

together with some examples of translation of the DBTG commands is

shown in Fig 6.3.12.



p. 158

I4AP1:

Pec-nane NSET Ke)y attrI

DEPT DEPT (D4, DN) D#I
[JH jJH(EIP(E#),JOB(JB#), (OP(E#),JOB(JB#))

MAP2:

Set name 07NERREC 'IDC=JERATIR NMREC__GaNER M JM 4AtRM-

SDE ~ DEPT JDlaT EMIP iaEMp

Fig 6.3.10: An example fonnat of data structure of the network
database mapping

DEPT

ID

IJB zJ IDIzz Ip #,

ID ID ID

JB-H EMPPPJ

ID ID

Fig 6.3.11: tkAh of EMU'P ASSIGUY4T network



p. 159

FIND Rec name

Retrieveunique (NSET (Rec name) ) where
(Key_attr-Rec_name) =ID (Recname))

(Here NSET(Rec name) refers to the second column of MPAI in
Fig 6.11; Key-attr(Rec name) refers to the 3rd column of MiAPI;
ID(Recname) refers to-the ID field of the record Rec nane
in UWA; etc.)

FIND FIST (NEXT) VE4BER WITHIN Set nae:

Retrieve first(next) (NSET(MEM REC(Set name)) where
(MEM TO CONER ATITR(Set name) =

ID (aZER RECSet_nae-)))

FIND NER WITHIN Setname:

Retrieveunique (NSET('NER REC(Set name))) where
(CWNER TO M4 ATfR(--Setname) = ID(ME_REC(Setname)))

Fig 6.3.12a: General logic for translating FIND ccrands



p. 160

MOVE "15" TO DEPT# IN DEPT;
FIND DEPT;

* RETRIEVE UNIQUE (DEPT (D#,DN,IOC)) WHERE (D#= DEPT# in DEPT in UWA);

DNAM IN--DEPT = "SYSTI";
MODIFY DEPT;

* UPDATE (DEPT) (D#=DEPT# in DEPT in U[A) (DN= D14E in DEPT in UWA,
LOC-LOC in DEPT in UWA);

FIND FIRST E4P WITHIN S D E;
* RETRIEVE UNIQUE (EMP (E#,EN)) WKHERE(DEPT(D#)= DEPT# in DEPT in UNA);

FIND FIRST ET.P PROJ WITHIN S E EP;
* RETRIEVEUNIQUE (E P (RMP(E#),P-RJ(P#),TI4EFRAC) WHERE

(E .P(E#)=E1P# in EMP in UWA);
FIND CNER WITHIN S P PJ;

* RETRIEVE UNIQUE (PPJ (P#,PN)) WHERE (P#= P# in EMPPPRJ in WA);
PRINT PIRJ;
FIND NEXT EMP WITHIN S D E;

* RETRIEVE NEXT (EMP (E#.EN)) WHERE (DEPT(D#)=DEPT# in DEPT in UWA)
SEQ(E#) CURRENT IS (EMP# in F1P in UIA);

Fig 6.3.12b Example of trnaslation of a set of network
data model coands
(* denotes translated statements)

I
f

i'I



p. 161

6.3.4 Database Sublanguage Facility and Summary of View Translation

Level

As mentioned in section 6.3.1, a user of the relational data model

may wish to use a relational sublanguage such as SEQUEL to query the

database. In general, any very-high-level user-oriented database

sublanguage may be incorporated into our system, so long as the data

model it assumes is supported at the view translation level and

operators it uses can be mapped to the operators of that particular

data model. A graphical representation of this concept is shown in Fig

6.3.13. Note that some sublanguages may be built on top of different

external data models simultaneously, depending on the application it

supports.

In summary, the three types of views discussed are very different

from each other in terms of definitions and the set of operations

allowed. However, implementation of these views on top of our

conceptual sets is similar, since all of them involved breaking the

views into the basic constructs. Therefore the final mapping may have

a common format.

In general, other views may also be provided, so long as they can

be broken down into a clearly defined collection of basic constructs

supported by the conceptual schema. Once this is done, any operation

on the views may be translated.

Finally, we should take note of the issue of performance. Since

we have truely established a system of many levels of indirection, care

.. . ... &W .. ... ...&.. .•.... A,,h-w," --- : -- ? -d :aw '' ' ' - ' ' ' & 't " f



p. 162

JDB sublanguagel IDB sublanguage2

Database
Sublanguage
Facility DBSL1 EDMi1

mapping DBSL2 EDM2tmapping IDBSL-2. EDM31

mapping

r
External External
Data Data Model External Data External
Model Model 2 Data Model 3
ProcessorsL

L

Fig 6.3.13 Architecture for handling
Database Sublanguages

'S



p. 163

has to be taken to address the problem of overhead. How we may proceed

to take advantage of sequential processing by penetrating throuJh these

levels in order not to lose connectivity between one transaction and

the next is one of the vital performance issues we shall look at when

an external view and processings against it are established.

S *



p. 164

6.4 View Authorization Level

6.4.1 Introduction

Every external view (e.g. a set of relations or a hierarchy of

segments) has associated with it a set of legal 'viewers', which is

designated by a set of accounts. Legitimate user accounts of a view

are specified when a view is defined.

Hierarchy of authority: The access power of accounts may be

organized hierarchically; for example, accounts beginning at letter A

may have all the access capabilities of accounts beginning at letter B,

but not vice versa. Also, those accounts that are capable of defining

views will have the authority to designate a set of accounts as legal

users and specify their capability (e.g. read or write). On the other

hand, a view definition may only be changed or deleted by an account

that has the authority to define the view. Therefore a hierarchy of

authorization is constituted.

Log-on: As conventionally done, a user gains access to an account

through its password which is to be supplied to the system when he

attempts to log on. Once the user is in the system, a process is

created. The process controller at the front end level maintains

information of all active processes.

View authorization: For the purpose of security control, this

level maintains several control tables. The first one is an access



p. 165

List. It lists, for each view defined for the database, the accounts

that are allowed to retrieve or update the view. It also lists those

accounts that have the authority to change the view definition. An

example is given in Fig 6.4.1.

The other table is an active process table, which, for each active

process in the system, lists the view currently in use by the process.

A process has to declare the view it wishes to operate upon before any

access command is given. Once the view is declared (through an

OPENVIEW command), and the access list checked for legality of this

declaration, an entry in the active process table is made. The format

of the table is shown in Fig 6.4.2. The view authorization level also

posts this information with the view translation level, which then

proceeds to create a 'process control block' for this process within

the appropriate external data model processor. This 'process control

block' also maintains working space necessary for those view

construction procedures to serve this process. A process may change

the view it wants to see by closing the previous one (by CLOSE VIEW

command) and declaring a new one. A summary of the command flow at

this level is shown in Fig 6.4.3.

6.4.2 DD Interface

Database designers have to spell out access information when the

database or a view of it is defined. All authorization parameters in

DD statements are intercepted and entered into the catalogue, and

further manipulation on the database are checked against this security



p. 166

lIEV NM READ 11RM[E DEFINITION

flierEM1P B001- A00. 1A900
B009 A030

HlierDEPT B010- A020 ?4901
B019

Fig 6.4.1 An exairple of the forrnut of the access list

fRO~CESS ID ACCOUNT ]VIEW OPENED CAPABILITIY

jB001.1 IB001 Hier EM Read
lA001.1 IA001 fier7 EMP Write
jB001.2 JB001 Pel DEPT Read

Fig 6.4.2 Active process table



p. 167

VAL: BEGIN;

Case command Of

"Define View": Do;

Process View Authorization definition;
If definition legal then do;

Make entry in the access list;
Pass the rest of the data definition

to an appropriate EDMP;
end;

Else do;

Formulate error message;
Pass error message out;
end;

end;

"Open-View": Do;

Check against the acess list;
If legal then do;

Make entry in the active process table;
Pass command to the appropriate FDMP;
end;

Else do;

Formulate error message;
Pass error message out;
end;

end;

"Close View": Do;

Erase view entry in the active process table;
end;

"Operations": Do;

Check against active process table:
Pass command to the EDkIP which processes the view;
end;

END;

(EDMP: External Data Model Processor)

Fig 6.4.3: Command flow in the View Authorization Level

.... . .. .. .. ..... . .. : .i " - . : . ' - -" ,4... ':' . .



p. 168

information in the catalogue.

A special module called authorizationparameter_processor is used

to decode the security parameters and make entries in the security

catalogue before passing the rest of the DD statement down.

6.4.3 Operational Interface

The set of operators accepted at this level for data manipulation

purposes is identical to those accepted at external view levels. In

addition, a process must open a view before it issues an operator

against it, and close the view before it wishes to change to another

view or becomes inactive. Therefore two additional commands are

identified:

OPENVIEW (processid, account id, view-name)

CLOSEVIEW (processid)

L,,



p. 169

VII. SUMMARY AND FUTURE RESEARCH DIRECTIONS

7.1 Summary of report

The INFOPLEX database computer project has provided the motivation

for this report. It is our belief that, while information processing

is and will be playing the central role in the application of

computers, the conventional computing-oriented computer architecture is

not adequate for handling large-scale information processing. The

INFOPLEX database computer is geared toward design of a highly-parallel

computer system specialized in information processing.

In chapter 1, the general background and basic architectural

concepts of the INFOPLEX database computer are introduced. The

INFOPLEX consists of two parts, the Storage Hierarchy and the

Functional Hierarchy. The Storage Hierarchy handles an ensemble of

storage devices and supervises data movement among them, supporting a

large virtual storage; while the Functional Hierarchy performs all

other database management functions. This report presents a

preliminary design of the latter component based on the concepts of

hierarchical functional decomposition and multiple microprocessor

implementation..

The first task during preliminary design is to identify the

functional requirements of the system. In chapter 2, a search into the

literature of database systems has helped clarifying the picture. Most

notably, two concepts in stratification of database managment systems,



p. 170

namely, information abstracton and functionAl abstraction, are reviewed

to provide insights into functions to be supported by a contemporary

database system and how to organize them into hierarchical level. The

following are important functional objectives of the functional

hierarchy: (1) multiple types of external views; (2) a high-level

conceptual data model; (3) a variety of stored data structures (i.e.

a flexible internal model); (4) explicit support of security,

validity, alerting and virtual information; and (5) concurrent use of

the database.

A Binary Network data model is developed as the conceptual data

model in the functional hierarchy. The model is shown to provide

natural mapping to the external views and the stored data structure,

and incorporates clean semantics. The internal data model and external

view support are also outlined. Chapter 2 concludes with a 10-level

hierarchy of functions, which are further detailed in later chapters.

These functions may be grouped into memory management, internal

structure management, conceptual structure management, and external

structure management.

The memory management level uses the id approach to insulate the

byte detail from the upper levels, and keeps track of free storage

space and performs compaction and garbage collection. The id approach

enables all upper levels to use an id as the location of a data item,

and not to be concerned about the byte address. The internal structure

* management is broken Into three levels, integrated by the Basic

* Encoding Unit (BEU) concept. The data encoding level provides 'final

touches', such as text editing, compaction and encryption, to the data

L. .... .. . .. ., __ __ __ __ __ __ _.____ ,__ ________,__,

4,m



p. 171

before the data enters into the storage hierarchy. The unary set level

organizes data elements into unary sets, and is capable of performing

intellignent search into a unary set for a particular unary data

element. The binary association level maps binary relations described

in the conceptual schema to their implementation, and pieces together

unary data elements (records) and pointers among them. These three

internal structure levels provide insulation between the conceptual

organization of information and its internal structure such that

changes in internal structures will be reflected only in the mapping

between the two. The interface to the binary association level enables

upper levels to dedicate search and storage of their own house-keeping

information (e.g. catalogues) to the internal levels, thus realizing

functional abstraction. Furthermore, the BEU concept reflects a

parametric and modular approach to internal structure building.

The conceptual structure management is also broken into 3 levels.

The n-ary level processes the core part of the conceptual schema,

keeping track of entities and attributes and enforces binary semantic

relationships among them. The virtual information level builds new

consructs whose values are not stored, but derived. The validity level

maintains more complex update constraints.

The external structure management provides user views onto the

integrated database. Three types of views are demonstrated to be

mappable to the conceptual structure. The view translation level keeps

track of construct mapping and performs operator translation. Finally,

system security is maintained through a view mechanism contained in the

view enforcement level and the view authorization level.



*F

p. 172

To summarize, processing of a request in the database is described

below. It is first checked for entry legality by the view

authorization level; then it enters into the view translation level,

which translates its references to external constructs into those in

the conceptual schema. The request then goes into conceptual structure

levels, which in turn call up internal structure levels to retrieve or

update the target elements. Each level in. performing its task may call

upon lower levels for information or subtasks. The system employs both

transaction pipelining and functional abstraction. It also supports

the notion of 'family of systems' by having levels communicate with

others through implementation-independent interfaces, allowing easy

reconfiguration of the system.

7.2 Future research directions

We plan to conduct further research in the area of the functional

hierarchy along the following dimensions.

7.2.1 Formal Des'gn Methodology

In this report, we have identified functional requirements of a

database system and organized them into a hierarchical structure. A

formal design methodology will be utilized such that the current design

can be verified and alternative designs examined. A formal design

methodology will also help in detecting potential ambiguities in the

design before implementing a software prototype of the system. We plan



p. 173

to build our methodology based on the Systematic Design Methodology

(SDM) developed by Huff <Huff79>. Some extensions of SDM may have to

be generated to tie this design methodology more closely to the design

of the functional hierarchy. This research will include both

investigation and application of the methodology.

7.2.2 Locking Mechanisms

To support concurrent uses of a shared database, interlock

mechanisms must be used to coordinate update operations. Care has to

be taken in designing and implementing this locking mechanism to avoid

adversely affecting performance of the system. Current research in

this area includes its theoretical aspects <e.g., Bernstein80b,

Eswaran74>, strategies used for concurrency control in database systems

<e.g., Gray76, Bernstein8Oa>, and certain performance issues <e.g.,

Bada18O, Ries77>. They will be reviewed in an attempt to develop a

method that is most suited to the architecture of the functional

hierarchy. The relationship between concurrency control at the

functional level and at the physical level will also be investigated.

7.2.3 Mapping of the operators

The need for mapping stems from the fact that the functional

hierarchy is composed of layers each of which supports a different set

of operators. The differences in data structures and data models

between levels contribute most to the differences in these operators.

Ii



p. 174

Further research is required to

1) specify in more detail the meaning of the operators at each

level;

2) show how these operators are translated into those implemented

at the next lower level;

3) prove that the translation algorithms preserve the desired

meaning of the operators.

Current-day research in the area of data models, much of it having

been reviewed in chapter two (notably section 2.2.3), will be drawn

upon to obtain insights into this problem.

7.2.4 Implementation of a software prototype

For better understanding of the functional hierarchy,

implementation of a software prototype shall be planned. One of the

major purposes of this software prototype is to facilitate measurements

of parameters for performance evaluation. The following steps will be

taken for carrying out this implementation:

1) Select a member system from the family of the database systems

supported by the functional hierarchy;

2) Resolve the detailed design issues and algorithms in the

selected system;

3) Conduct coding and testing of the system in PL/l;

4) Identify properties in performance of the system.|t



p. 175

7.2.5 Performance evaluation

Models will be built to examine performance of the proposed

architecture. Measurements will be taken from the software prototype

discussed above as estimates of some of the parameters in the model.

Experiments will be conducted to closely examine performance of the

system in various user environments and implementation alternatives. A

comparison in performance will also be made between the proposed,

highly parallel and decentralized computer architecture and the

conventional architectures.

7.2.6 Recovery and reliability

One of the advantages of the proposed architecture of the

functional hierarchy is its ability to recover from isolated software

and hardware breakdowns. Further research is required to identify the

methods and protocols to be used by the functional hierarchy to detect

and recover itself from possible breakdowns. Measurements of

reliability are to be taken for comparison with the conventional

architecture.



p. 176

REFERENCES

Abraham79: Abraham, M., 'Properties of reference algorithms in
multilevel storage hierarchy' Master Thesis, Sloan School of
Management, MIT, 1979

Astrahan76: Astrahan, M.M. et al. 'System R' ACM TODS, Vol 1, NO.
2, June 1976

ANS175: ANSI/X3/SPARC study group on DBMS interim report, Feburary
1975

Bachman77: Bachman, C.W., and Daya, M., 'The role concept in data
models', Proc., VLDB, 1977

Badal80: Badal, D.Z., 'The analysis of the effects of concurrency
control on distributed database system performance', VLDB 1980

Bernstein76: Bernstein, P.A., 'Synthesizing third normal form
relations from functional dependency', ACM TODS, Vol. 1, No. 4, Dec
1976

Bernstein8Oa: Bernstein, P.A., Shipman, D.W., and Rothnie, J.B.,
'Concurrency control in a system for distributed databases (SDD-l)' ACM
TODS Vol. 5, No. 1, March 1980

Bernstein80b: Bernstein, P.A., and Goodman, N., 'Fundamental
Algorithms for concurrency control in distributed database systems',
Technical Report CCA-80-05, Computer Corporation of America, Feb 1980

Borkin78: Borkir, S.A., 'Data model equivalence', Proc., VLDB, 1976

Bracchi74: Bracchi, G. et al. 'A multilevel relational model for
database management systems', in Data Base Management, North-Holland
Publishing Company, 1974

Bracchi76: Bracchi, G., Paolini, P., and Pelagatti, G., 'Binary
logical associations in data modelling', in Modelling in Data Base
Management System, (ed., Nijssen), North-Holland, 1976

Chen76: Chen, P. P., 'The entity-relationship model -- toward a
unified view of data', ACM TODS Vol 1, No. 1, March 1976

II - ~ .~ -I



p. 177

Codd72: Codd, E.F., 'Further normalization of the database relational
model', in DataBase Systems, Prentice-Hall, 1972

Codd79: Codd, E. F., 'Extending database relational model to capture
more meaning' ACM TODS, vol 4, no. 4, December 1979

Date77: Date, C.J., 'An introduction to database systems'
Addison-Wesley Publishing Company, 1977

DBTG 76: Data Base Task Group of CODASAL Programming Language
Committee, COBOL Journal of Development, 1976

Eswaran74: Eswaran,K.P., et.al., 'The notions of consistency and
predicate locks in a database system', IBM RJ 1329, December 1974

Eswaran75: Eswaran,K.P. and Chamberlin, D. D., 'Functional
specifications of a subsystem for database integrity', Procd., VLDB,
1975

Fagin77a: Fagin, R. 'Multivalued depencdencies and a new normal from
for relational database', ACM TODS, Vol. 2, No. 3, September 1977

Fagin77b: Fain, R., 'The decomposition versus the synthetic approach
to relational database design', Proc., VLDB, 1977

Falkenberg76: Falkenberg, E. 'Significations: the key to unify data
base management', Information Systems, 1976, Vol 2, No.1

Falkenberg77: Falkenberg, E., 'Concepts for the coexistence approach
to database management', Proc., Int. Comp. Symp., April 1977

FODS76: 'Proposal for research on the design of a family of data base
systems' CISR Draft, Sloan School of Management, MIT, December 1976

PQo76: Madnick & Goldberg, 'Family of Operating Systems', Sloan School
f Management, MIT, 1976

P t-7: Fry, J.P. et al., 'Stored-data description and data
.'11-:;lation: a model and language', Information Systems, Vol 2, 1977,

+ + - 48



p. 178

Gray76: Gray, J.N., Lorie, R.A., Putzolu, G.R., Traiger, I.L.,
'Granularity of locks and degrees of consistency in a shared database'
in Modelling in database management systems, North Holland Publishing
Company, 1976

Hall76: Hall, P., Owlett, J., and Todd, S., 'Relations and Entities',
in Modelling in Database Management System, North-Holland, 1976

House179: Housel, B.C., Waddle, V., and Yao, S.B., 'The functional
dependency model for logical database design', Proc., VLDB, 1979

Hsiao77: Hsiao, D. K., Madnick, S.E. 'Database machine architecture
in the context of information technology evolution', Proceeding, VLDB
1977

Hsiao79a: Hsiao, D.K., Kerr, D.S., Madnick, S.E., 'Computer security'
Academic Press 1979

Hsiao79b: Hsiao, D.K., ed., 'Collected readings on a database computer
(DBC)', Department of computer and Information Science, The Ohio State
University, Columbus, March 1979

Huff79: Huff, S.L., 'A systematic methodology for designing the
architecture of complex software systems', Ph.D. Thesis, Sloan School
of Management, MIT, June 1980

IMSa: IBM Information Management System/ Virtual Storage Utilities

Reference Manual

IMSb: IBM Information Management System/ Virtual Storage Application
Programming Reference Manual

Kerschberg77: Kerschberg, L., Klug, A., and Tsichritzis, D., 'A
taxonomy of data models', Proc., VLDB, 1976

Klug77: Klug, A. and Tsichritzis, D., 'Multiple view support within
the ANSI/SPARC framework', Proc. VLDB, 1977

Lam79: Lam, C., Madnick, S.E., 'Properties of storage hierarchy
systems with multiple page sizes and redundant data' ACM TODS,
September, 1979

Madnick69: Madnick, S.E. and Alsop, J.W., 'A modular approach to file



p. 179

system desing', Proc., AFPIS, 1969

Madnick73: Madnick,S.E. et al., 'Virtual Information in data base
systems', Sloan School of Management, M.I.T.

Madnick74: Madnick, S.E., Donovan, J.J. 'Operating Systems',
McGrqw-Hill, New York, 1974

Madnick75: Madnick, S.E., 'Design of a general hierarchical storage
system', IEEE International Conference Procedings, 1975

Madnick79: Madnick, S.E., 'The INFOPLEX database computer: concepts &
directions' Proceedings, IEEE Computer Conference, Feburary 1979

Madnick80: Madnick, S.E., 'Proposal for Research on the Desgin of a
high-erformance high-availability intelligent memory system', Sloan
School of Management, MIT, May 1980

McLeod78: McLeod, D. 'A semantic database model and its associated
structured user interface', Ph.D. Thesis, L.C.S., MIT, August 1978

Morgan75: Morgan, H.L., and Buneman, O.P., 'Alerting in database
systems: concepts and techniues', working paper 75-12-02, The Wharton
School

Navathe76: Navathe, S.B., and Fry, J.P., 'Restructuring for large
databases: Three levels of abstraction', ACM TODS, Vol 1, No. 2 June,
1976

Navathe77: Navathe, S.B., 'Schema analysis for database
restructuring', VLDB Proceedings, 1977

Navathe78: Navathe, S.B. and Schkolnick, M., 'View representation in
logical database design', Proc., ACM SIGMOD 1978

Nijssen76: Nijssen G.M. ed., Modelling in Data Base Management
Systems, North-Holland Publishing Company, New York 1976

Paolini77: Paolini, P. and Pelagatti, G., 'Formal definitions of
mappings in a database', Proc., ACM SIGMOD 1977



p. 180

Ries77: Ries, D.R., and Stonebraker, M., 'Effects of locking
granularity in a database management system', ACM TODS Vol.2, No.3,
September 1977

Rothnie76: Rothnie, J.B. and Hardgrave, W.T., 'Data model theory: a
beginning', Texas Conference on computer Systems, 1976

Roussop75: Roussopoulos, N. and Mylopoulos, J., 'Using semantic
networks for data base managment', Proc., VLDB 1975

Schkolnick78: Schkolnick, M., 'A survey of physical database design
methodology and techniques', IBM Research RJ 2306, August 1978

Schmid75: Schmid, H.A., Swenson, J.R., 'On the semantics of the
relational data model', ACM SIGMOD Conference Proceedings, 1975

Senko73: Senko, M.E., 'Data structures and accessing in database
systems: II. Information Organization', and 'III. Data
representations and data independent accessing model', IBM Systems
Journal, No.1 1973

Senko77: Senko, M.E, 'Data strucutre and data accessing in database
systems: past, present and future', IBM Systems Journal No.3, 1977

Smith7l: Smith, D.P., 'An approach to data description and
conversion', Moor School Report No. 72-20, University of Pennsylvania,
1971

Smith77a: Smith J.M., Smith D.C.P., 'Database abstractions:
* Aggregation and generalizations', ACM TODS Vol 2, No.2, June 1977

Smith77b: Smith, J.M., and Smith, D.C.P, 'Database abstractions:
Aggregation', CACM, Vol 20, No. 6, 1977

Toong8O: Toong, H.D., 'A general multi-microprocessor interconnection
mechanism for non-numeric processing', Fifth Workshop on Computt.-r
Architecture for non-numeric processing, March 1980

Tsichritz78: Tsichritzis D. et al. 'The ANSI/SPAC DBMS framework',
Information Systems, 3,3,1978, pp.173-192

Vetter77: Vetter, M., 'Database design by applied data synthesis',



p. 181

VLDB Proc., 1977

Yao79: Yao, S.B., 'optimization of query evaluation algorithms', ACM
TODS Vol 4, No. 2, June 1979

Yourmark77: Yormark, B. 'The ANSI/X3/SPARC/SGDBMS architecture' 1977



W* T


